Some Recipes and Exercises With Tests, Type I and Type II errors, Size, Power, and Severity: November 2008
D. Mayo

We are sampling from a population of fish, or more properly, of fish lengths. (This example is from Mayo (1985), but you do not need that paper for this.) A fish’s length, in inches, may be represented by variable X; that is, to each fish a value of X (like a little badge) is attached.

A random sample of size n is taken, \(X = (X_1, \ldots, X_n) \), where each \(X_i \) is distributed Normally with unknown mean \(\mu \) and known standard deviation \(\sigma = 2 \). Suppose we want to test the hypotheses:

\[
H: \mu = \mu_0 = 12, \quad \text{against} \quad J: \mu > \mu_0.
\]

\(H \) is the “null” or “test” hypothesis, and \(J \) the (composite) alternative hypothesis. The N-P test is a rule that tells us for each possible outcome \(x = (x_1, \ldots, x_n) \) whether to reject or accept \(H_0 \). The rule is defined in terms of a test statistic or distance measure:

\[
d(X) = (\cdot \mu)/\sigma_x,
\]

where \(\bar{X} \) is the sample mean whose sampling distribution is also Normal with mean \(\mu \) and standard deviation \(\sigma_x = \sigma/\sqrt{n} \).

In order to test these claims, we observe, randomly, \(n \) fish (fish lengths), and average their lengths to get \(\bar{X} \). We perform a one-sided test.

Under the null hypothesis \(H \): \(\bar{X} \) is Normal \((\mu, \sigma_x) \), and \(\mu = 12 \).

and

Under the alternative hypothesis \(J \): \(\bar{X} \) is Normal \((\mu, \sigma_x) \), and \(\mu > 12 \).

\(\bar{X}_{obs} \) = the sample (observed) mean.

1. To calculate the statistical significance level of \(\bar{X}_{obs} \)
 a. Calculate \(D_{obs} = \bar{X}_{obs} - \bar{X}_{obs}(\text{expected assuming } H) = \bar{X}_{obs} - 12 \)
 b. Put \(D_{obs} \) in standard deviation units: \(D_{obs}/\sigma_x \)
 c. Find the area between 0 and \(D_{obs}/\sigma_x \) on the Standard Normal distribution chart.
 d. .5 minus the value you get in c is the statistical significance level of the observed difference.
2. The severity with which J passes this test with outcome \bar{X}_{obs} equals 1 minus the statistical significance level of D_{obs}. See #6. below.

| Problem Set #1: Find the statistical significance level of each of the following outcomes with the indicated sample size n: |
a. n = 25:	(i) $\bar{X}_{\text{obs}} = 12.6$	(ii) $\bar{X}_{\text{obs}} = 12.8$	(iii) $\bar{X}_{\text{obs}} = 13$.
b. n = 100:	(i) $\bar{X}_{\text{obs}} = 12.2$	(ii) $\bar{X}_{\text{obs}} = 12.4$	(iii) $\bar{X}_{\text{obs}} = 12.5$
c. n = 1600:	(i) $\bar{X}_{\text{obs}} = 12.1$	(ii) $\bar{X}_{\text{obs}} = 12.2$	(iii) $\bar{X}_{\text{obs}} = 12.6$

3. Tests (e.g., in Neyman-Pearson theory) are specified by giving a rule for when outcomes should be taken to reject H and accept J, and when not. A typical rule would be to reject H whenever the difference between the observed mean and the mean expected assuming H were true reaches a given small statistical significance level, e.g., .05, or .03, or .01. When the significance level that will lead to rejecting H is set out ahead of time at some fixed value, say .03, this value is called the **size** of the test.

4. Suppose the hypotheses being tested are as above:

$$ H: \mu = 12 \text{ vs. } J: \mu > 12. $$

Define (one-sided) test T+ (with size = .03): Reject H and accept J whenever \bar{X}_{obs} is statistically significantly different from 12 (in the positive direction) at level .03.

Equivalently we can define:
Test T+ (with size = .03) :Reject H and accept J
whenever $\bar{X}_{\text{obs}} \geq 12 + 2 \sigma_x$.

or
Test T+ :Reject H and accept J whenever $D_{\text{obs}} \geq 2 \sigma_x$

Define (one-sided) test T+ (with size = .001): Reject H and accept J whenever \bar{X}_{obs} is statistically significantly different from 12 (in the positive direction) at level .001.
Equivalently we can define:
Test T+ (with size = .001): Reject H and accept J whenever \(\bar{X}_{\text{obs}} \geq 12 + 3 \sigma_x \).

or
Test T+: Reject H and accept J whenever \(D_{\text{obs}} \geq 3 \sigma_x \).

5. Let \(\bar{X}^* \) be the **cut-off for rejection**.

Then \(\bar{X}^* \) for T+ with size .03 = 12 + 2 \(\sigma \bar{X} \).

Questions: What is \(\bar{X}^* \) for this test when \(n = 100 \)? (answer: 12.4).

What is \(\bar{X}^* \) for Test T+ with size .001 and \(n = 100 \)? (answer: 12.6.)

<table>
<thead>
<tr>
<th>Problem Set #2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Find (\bar{X}^*) for Test T+ with size .03 and (n = 25), and for (n = 1600).</td>
</tr>
<tr>
<td>2. Which of the outcomes in Problem Set #1, a. and b., would lead to rejecting H at this level? The outcomes were:</td>
</tr>
<tr>
<td>a. n = 25: (i) (\bar{X}{\text{obs}} = 12.6) (ii) (\bar{X}{\text{obs}} = 12.8) (iii) (\bar{X}_{\text{obs}} = 13).</td>
</tr>
<tr>
<td>c. n = 1600: (i) (\bar{X}{\text{obs}} = 12.1) (ii) (\bar{X}{\text{obs}} = 12.2) (iii) (\bar{X}_{\text{obs}} = 12.6)</td>
</tr>
</tbody>
</table>

5. **The Type I error**: This is the error of rejecting H when actually J is true. The probability that test T+ with size .03 commits a Type I error, written as

\[
\alpha = P(\text{Test T+ rejects H ; H is true}) = P(\bar{X} \geq \bar{X}^* ; \text{H is true}) = P(\bar{X} \text{ is statistically significant at level .03| H is true}) = .03
\]

So, the fixed size of the test ensures that the probability of a Type I error is no more than .03.

In general, by fixing a small size \(\alpha \), the test is assured of having a small probability, namely \(\alpha \), of committing a Type I error.

6. Suppose Test T+ with size \(\alpha = .03 \) rejects H and “passes” J with an outcome that just reaches the cut-off for rejection, i.e., suppose \(\bar{X}_{\text{obs}} = \bar{X}^* \).

We can show that the severity with which J passes test T+ with \(\alpha = .03 = 1 - \alpha = 1 - .03 = .97 \).
By definition of severity, the severity with which a hypothesis J passes a test T with outcome e = P(Test T would not yield such a passing result ; J is false) = 1 - P(Test T+ would yield such a passing result | J is false)

Notice that “passing J” (that \(\mu > 12 \)) is the same as rejecting H in the case of test T+. And “J is false” = H is true.

Therefore, this equals = 1 - P(Test T+ reject H ; H is true)

and from #5 above, we have this is = 1 - \(\alpha \) = 1 - .03 = .97.

(Note: There is no difference in this test if we let H: \(\mu \leq 12 \))

7. The Type II Error, \(\beta \), and Power

Once again, consider Test T+ (with size \(\alpha = .03 \)) and \(\bar{X}^* \) the cut-off for rejection of H where

H: \(\mu = 12 \) vs. J: \(\mu > 12 \).

The Type II error is the error of failing to reject H, even though H is false and J is true.

The probability a test T commits a Type II error, written as

\[\beta = P(\text{Test T commits a Type II error}) = P(\text{Test T accepts H ; J is true}) \]

where “accept H” just means you do not reject it. (We will clarify the precise way to interpret “accept H” as we proceed.)

Now, J in test T+ is a composite or complex hypothesis. In order to calculate \(\beta \), we have to consider particular point values of \(\mu \) in the alternative J (i.e., values of \(\mu \geq 12 \)). Let J’ abbreviate a specific value of \(\mu \) in the alternative J.

Then

\[\beta = P(\text{Test T+ accepts H ; J'}) = 1 - P(\text{Test T+ rejects H ; J'}) \]

\[= P(\bar{X} < \bar{X}^* ; J') = 1 - P(\bar{X} \geq \bar{X}^* ; J') \]

Case 1: J’ < \(\bar{X}^* \)

Draw a picture of the Normal curve, label J’ right at the midpoint, H to the left of J’ and \(\bar{X}^* \) somewhere to the right of J’. shade in the entire area under the curve to the left of \(\bar{X}^* \). This shaded area, which must clearly be greater than .5,
equals \(\beta \). So, the probability of a Type II error in this case is not low, it is greater than .5.

\[
\text{Case 2: } J' > \bar{X}^* \\
\text{Draw a picture of the Normal curve, label } J' \text{ right at the midpoint, } \bar{X}^* \text{ to the left of } J' \text{ and } H \text{ to the left of } \bar{X}^*. \text{ Shade in the area under the curve to the left of } \bar{X}^*. \text{ This shaded area, which must clearly be less than .5, equals } \beta. \\
\]

\[
\text{To Calculate a particular value for } \beta, \text{ i.e., } P(\bar{X}^* < \bar{X} ; J'') \\
\text{Note that it is always calculated using the cut-off value for rejecting } H, \text{ namely, } \bar{X}^*. \text{ Again, you begin by calculating a difference, but now, since the assumption is that } J' \text{ is true, you calculate:} \\
\]

1. Find \(D = \bar{X}^* - J' \)

2. Divide \(D \) by \(\sigma_x \) \(\text{(Note that in case 1, } D \text{ is positive, in case 2, } D \text{ is negative.)} \)

3. Find the area to the left of the value you get in #2, under the standard Normal curve.
4. The area to the right of the value you get in #2 is the power of the test (to reject H and accept J’). (So power = 1 - \(\beta \))

Example: For T+ (with \(\alpha = .03 \)) and \(n = 100 \), the cut-off for rejecting H, \(\bar{X}^* \), is 12.4. (\(\sigma_x = .2 \)) Say you want to find \(\beta \) for J’: \(\mu = 12.2 \).

You ask: What is the probability that Test T+ would accept H when in fact J’ is true? That is: what is the probability that Test T+ would accept H: \(\mu = 12 \) when in fact the true value of \(\mu \) is 12.2?

To answer, you calculate \(D = 12.4 - 12.2 = .2 \) which is equal to 1 standard deviation. (Note, this is an example of case 1.)

The area to the left of 1 on the standard Normal curve is about .84. So \(\beta = .84 \).

Problem Set #3: For Test T+ (with \(\alpha = .03 \)) and \(n = 100 \) with

H: \(\mu = 12 \) vs. J: \(\mu > 12 \) and \(\sigma = 2 \), so (\(\sigma_x = .2 \))

1. Find the probability that Test T+ commits a Type II error when J’: \(\mu = 12.6 \).

A Useful Abbreviation: Since the probability of a Type II error, \(\beta \), always varies with the particular point value of J’, it will be useful to abbreviate the probability that Test T+ commits a Type II error when J’: \(\mu = \mu’ \) as simply \(\beta(\mu’) \) or \(\beta(J’) \).

So problem 1 in set #3 is to calculate \(\beta(12.6) \).

I’ll do this first one: \(D = 12.4 - 12.6 = -.2 \), which is \(-1 \sigma \bar{X} \). The area to the left of -1 on the standard Normal curve = .5 - (the area between 0 and 1) = .5 - .34 = .16.

Note that this is an example of case 2: J > \(\bar{X}^* \).

2. Find \(\beta(12) \).

3. Find \(\beta(12.2) \)

4. Find \(\beta(12.4) \).

5. Find \(\beta(12.7) \)

6. Find \(\beta(12.8) \)

7. Find \(\beta(12.9) \)

8. Find \(\beta(13) \).

9. Plot these points on a curve on whose horizontal axis are values of J’ and whose verticle axis are the corresponding values of \(\beta(J’) \).

10. Explain why \(\beta(H) = 1 - \alpha \).
11. Graph the corresponding values (in 1-8) for the power. This yields a power curve.

12. Explain: If Test T^+ accepts H (say it just misses the cut-off \bar{X}^*) and $\beta(\mu')$ is very low, then “$\mu < \mu'$” passes a severe test.