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I Central Goals, Themes, and Questions

1 Philosophy of Science: Problems and Prospects

Methodological discussions in science have become increasingly common
since the 1990s, particularly in fields such as economics, ecology, psychol-
ogy, epidemiology, and several interdisciplinary domains – indeed in areas
most faced with limited data, error, and noise. Contributors to collections
on research methods, at least at some point, try to ponder, grapple with,
or reflect on general issues of knowledge, inductive inference, or method.
To varying degrees, such work may allude to philosophies of theory test-
ing and theory change and philosophies of confirmation and testing (e.g.,
Popper, Carnap, Kuhn, Lakatos, Mill, Peirce, Fisher, Neyman-Pearson, and
Bayesian statistics). However, the different philosophical “schools” tend to
be regarded as static systems whose connections to the day-to-day questions
about how to obtain reliable knowledge are largely metaphorical. Scientists
might “sign up for” some thesis of Popper or Mill or Lakatos or others, but
none of these classic philosophical approaches – at least as they are typically
presented – provides an appropriate framework to address the numerous
questions about the legitimacy of an approach or method.

Methodological discussions in science have also become increasingly
sophisticated; and the more sophisticated they have become, the more they
have encountered the problems of and challenges to traditional philosoph-
ical positions. The unintended consequence is that the influence of phi-
losophy of science on methodological practice has been largely negative.
If the philosophy of science – and the History and Philosophy of Science
(HPS) – have failed to provide solutions to basic problems of evidence and
inference, many practitioners reason, then how can they help scientists to
look to philosophy of science to gain perspective? In this spirit, a growing
tendency is to question whether anything can be said about what makes an

1



2 Deborah G. Mayo and Aris Spanos

enterprise scientific, or what distinguishes science from politics, art or other
endeavors. Some works on methodology by practitioners look instead to
sociology of science, perhaps to a variety of post-modernisms, relativisms,
rhetoric and the like.

However, for the most part, scientists wish to resist relativistic, fuzzy,
or postmodern turns; should they find themselves needing to reflect in a
general way on how to distinguish science from pseudoscience, genuine tests
from ad hoc methods, or objective from subjective standards in inquiry, they
are likely to look to some of the classical philosophical representatives (and
never mind if they are members of the list of philosophers at odds with
the latest vogue in methodology). Notably, the Popperian requirement that
our theories and hypotheses be testable and falsifiable is widely regarded
to contain important insights about responsible science and objectivity;
indeed, discussions of genuine versus ad hoc methods seem invariably to
come back to Popper’s requirement, even if his full philosophy is rejected.
However, limiting scientific inference to deductive falsification without any
positive account for warranting the reliability of data and hypotheses is too
distant from day-to-day progress in science. Moreover, if we are to accept the
prevalent skepticism about the existence of reliable methods for pinpointing
the source of anomalies, then it is hard to see how to warrant falsifications
in the first place.

The goal of this volume is to connect the methodological questions sci-
entists raise to philosophical discussions on Experimental Reasoning, Reli-
ability, Objectivity, and Rationality (E.R.R.O.R) of science. The aim of the
“exchanges” that follow is to show that the real key to progress requires
a careful unpacking of the central reasons that philosophy of science has
failed to solve problems about evidence and inference. We have not gone far
enough, we think, in trying to understand these obstacles to progress.

Achinstein (2001) reasons that, “scientists do not and should not
take . . . philosophical accounts of evidence seriously” (p. 9) because they
are based on a priori computations; whereas scientists evaluate evidence
empirically. We ask: Why should philosophical accounts be a priori rather
than empirical? Chalmers, in his popular book What is This Thing Called
Science? denies that philosophers can say anything general about the char-
acter of scientific inquiry, save perhaps “trivial platitudes” such as “take
evidence seriously” (Chalmers, 1999, p. 171). We ask: Why not attempt to
answer the question of what it means to “take evidence seriously”? Clearly,
one is not taking evidence seriously in appraising hypothesis H if it is pre-
determined that a way would be found to either obtain or interpret data
as supporting H. If a procedure had little or no ability to find flaws in H,
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then finding none scarcely counts in H ’s favor. One need not go back to the
discredited caricature of the objective scientist as “disinterested” to extract
an uncontroversial minimal requirement along the following lines:

Minimal Scientific Principle for Evidence. Data x0 provide poor evidence
for H if they result from a method or procedure that has little or no ability
of finding flaws in H, even if H is false.

As weak as this is, it is stronger than a mere falsificationist requirement: it
may be logically possible to falsify a hypothesis, whereas the procedure may
make it virtually impossible for such falsifying evidence to be obtained.

It seems fairly clear that this principle, or something very much like
it, undergirds our intuition to disparage ad hoc rescues of hypotheses
from falsification and to require hypotheses to be accepted only after sub-
jecting them to criticism. Why then has it seemed so difficult to erect an
account of evidence that embodies this precept without running aground on
philosophical conundrums? By answering this question, we hope to set the
stage for new avenues for progress in philosophy and methodology. Let us
review some contemporary movements to understand better where we are
today.

2 Current Trends and Impasses

Since breaking from the grip of the logical empiricist orthodoxy in the
1980s, the philosophy of science has been marked by attempts to engage
dynamically with scientific practice:

1. Rather than a “white glove” analysis of the logical relations between
statements of evidence e and hypothesis H, philosophers of science
would explore the complex linkages among data, experiment, and
theoretical hypotheses.

2. Rather than hand down pronouncements on ideally rational method-
ology, philosophers would examine methodologies of science empiri-
cally and naturalistically.

Two broad trends may be labeled the “new experimentalism” and the “new
modeling.” Moving away from an emphasis on high-level theory, the new
experimentalists tell us to look to the manifold local tasks of distinguish-
ing real effects from artifacts, checking instruments, and subtracting the
effects of background factors (e.g., Chang, Galison, Hacking). Decrying the
straightjacket of universal accounts, the new modelers champion the dis-
unified and pluralistic strategies by which models mediate among data,
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hypotheses, and the world (Cartwright, Morgan, and Morrison). The
historical record itself is an important source for attaining relevance to
practice in the HPS movement.

Amid these trends is the broad move to tackle the philosophy of method-
ology empirically by looking to psychology, sociology, biology, cognitive
science, or to the scientific record itself. As interesting, invigorating, and
right-headed as the new moves have been, the problems of evidence and
inference remain unresolved. By and large, current philosophical work and the
conceptions of science it embodies are built on the presupposition that we can-
not truly solve the classic conundrums about induction and inference. To give
up on these problems, however, does not make them go away; moreover,
the success of naturalistic projects demands addressing them. Appealing
to “best-tested” theories of biology or cognitive science calls for critical
evaluation of the methodology of appraisal on which these theories rest.

The position of the editors of this volume takes elements from each of
these approaches (new experimentalism, empirical modeling, and natu-
ralism). We think the classic philosophical problems about evidence and
inference are highly relevant to methodological practice and, furthermore,
that they are solvable. To be clear, we do not pin this position on any of
our contributors! However, the exchanges with our contributors elucidate
this stance. Taking naturalism seriously, we think we should appeal to the
conglomeration of research methods for collecting, modeling, and learning
from data in the face of limitations and threats of error – including mod-
eling strategies and probabilistic and computer methods – all of which we
may house under the very general rubric of the methodology of inductive-
statistical modeling and inference. For us, statistical science will always have
this broad sense covering experimental design, data generation and mod-
eling, statistical inference methods, and their links to scientific questions
and models. We also regard these statistical tools as lending themselves to
informal analogues in tackling general philosophical problems of evidence
and inference. Looking to statistical science would seem a natural, yet still
largely untapped, resource for a naturalistic and normative approach to
philosophical problems of evidence. Methods of experimentation, simula-
tion, model validation, and data collection have become increasingly subtle
and sophisticated, and we propose that philosophers of science revisit tra-
ditional problems with these tools in mind. In some contexts, even where
literal experimental control is lacking, inquirers have learned how to deter-
mine “what it would be like” if we were able to intervene and control – at
least with high probability. Indeed “the challenge, the fun, of outwitting and
outsmarting drives us to find ways to learn what it would be like to control,
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manipulate, and change, in situations where we cannot” (Mayo, 1996,
p. 458). This perspective lets us broaden the umbrella of what we regard as an
“experimental” context. When we need to restore the more usual distinction
between experimental and observational research, we may dub the former
“manipulative experiment” and the latter “observational experiment.”

The tools of statistical science are plagued with their own conceptual and
epistemological problems – some new, many very old. It is important to
our goals to interrelate themes from philosophy of science and philosophy
of statistics.

� The first half of the volume considers issues of error and inference in
philosophical problems of induction and theory testing.

� The second half illuminates issues of errors and inference in prac-
tice: in formal statistics, econometrics, causal modeling, and legal
epistemology.

These twin halves reflect our conception of philosophy and methodology of
science as a “two-way street”: on the one hand there is an appeal to methods
and strategies of local experimental testing to grapple with philosophical
problems of evidence and inference; on the other there is an appeal to
philosophical analysis to address foundational problems of the methods
and models used in practice; see Mayo and Spanos (2004).

3 Relevance for the Methodologist in Practice

An important goal of this work is to lay some groundwork for the method-
ologist in practice, although it must be admitted that our strategy at first
appears circuitous. We do not claim that practitioners’ general questions
about evidence and method are directly answered once they are linked to
what professional philosophers have said under these umbrellas. Rather,
we claim that it is by means of such linkages that practitioners may better
understand the foundational issues around which their questions revolve. In
effect, practitioners themselves may become better “applied philosophers,”
which seems to be what is needed in light of the current predicament in
philosophy of science. Some explanation is necessary.

In the current predicament, methodologists may ask, if each of the
philosophies of science have unsolved and perhaps insoluble problems
about evidence and inference, then how can they be useful for eviden-
tial problems in practice? “If philosophers and others within science theory
can’t agree about the constitution of the scientific method . . . doesn’t it
seem a little dubious for economists to continue blithely taking things off
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the [philosopher’s] shelf?” (Hands, 2001, p. 6). Deciding that it does, many
methodologists in the social sciences tend to discount the relevance of the
principles of scientific legitimacy couched within traditional philosophy
of science. The philosophies of science are either kept on their shelves,
or perhaps dusted off for cherry-picking from time to time. Neverthe-
less, practitioners still (implicitly or explicitly) wade into general questions
about evidence or principles of inference and by elucidating the philo-
sophical dimensions of such problems we hope to empower practitioners
to appreciate and perhaps solve them. In a recent lead article in the jour-
nal Statistical Science, we read that “professional agreement on statistical
philosophy is not on the immediate horizon, but this should not stop us
from agreeing on methodology” (Berger, 2003, p. 2). But we think “what
is correct methodologically” depends on “what is correct philosophically”
(Mayo, 2003). Otherwise, choosing between competing methods and mod-
els may be viewed largely as a matter of pragmatics without posing deep
philosophical problems or inconsistencies of principle. For the “professional
agreement” to have weight, it cannot be merely an agreement to use meth-
ods with similar numbers when the meaning and import of such numbers
remain up in the air (see Chapter 7). We cannot wave a wand and bring
into existence the kind of philosophical literature that we think is needed.
What we can do is put the practitioner in a better position to support, or
alternatively, question the basis for professional agreement or disagreement.

Another situation wherein practitioners may find themselves wishing to
articulate general principles or goals is when faced with the need to modify
existing methods and to make a case for the adoption of new tools. Here,
practitioners may serve the dual role of both inventing new methods and
providing them with a principled justification – possibly by striving to find,
or adapt features from, one or another philosophy of science or philosophy
of statistics. Existing philosophy of science may not provide off-the-shelf
methods for answering methodological problems in practice, but, coupled
with the right road map, it may enable understanding, or even better, solving
those problems.

An illustration in economics is given by Aris Spanos (Chapter 6). Faced
with the lack of literal experimental controls, some economic practition-
ers attempt to navigate between two extreme positions. One position is
the prevailing theory-dominated empirical modeling, largely limited to
quantifying theories presupposed to be true. At the other extreme is data-
driven modeling, largely limited to describing the data and guided solely by
goodness-of-fit criteria. The former stays too close to the particular theory
chosen at the start; the second stays too close to the particular data. Those
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practitioners seeking a “third way” are implicitly thrust into the role of
striving to locate a suitable epistemological foundation for a methodology
seemingly at odds with the traditional philosophical image of the roles of
theory and data in empirical inquiry. In other words, the prescriptions on
method in practice have trickled down from (sometimes competing) images
of good science in traditional philosophy. We need to ask the question: What
are the threats to reliability and objectivity that lay behind the assumed pre-
scriptions to begin with? If data-dependent methods are thought to require
the assumption of an overarching theory, or else permit too much latitude
in constructing theories to fit data, then much of social science appears to be
guilty of violating a scientific canon. But in practice, some econometricians
work to develop methods whereby the data may be used to provide indepen-
dent constraints on theory testing by means of intermediate-level statistical
models with a “life of their own,” as it were. This is the key to evading
threats to reliability posed by theory-dominated modeling. By grasping the
philosophical issues and principles, such applied work receives a stronger
and far less tenuous epistemological foundation.

This brings us to a rather untraditional connection to traditional philo-
sophy of science. In several of the philosophical contributions in this vol-
ume, we come across the very conceptions of testing that practitioners may
find are in need of tweaking or alteration in order to adequately warrant
methods they wish to employ. By extricating the legitimate threats to
reliability and objectivity that lie behind the traditional stipulations, prac-
titioners may ascertain where and when violations of established norms
are justifiable. The exchange essays relating to the philosophical contribu-
tions deliberately try to pry us loose from rigid adherence to some of the
standard prescriptions and prohibitions.

In this indirect manner, the methodologists’ real-life problems are con-
nected to what might have seemed at first an arcane philosophical debate.
Insofar as these connections have not been made, practitioners are dubious
that philosophers’ debates about evidence and inference have anything to
do with, much less help solve, their methodological problems. We think the
situation is otherwise – that getting to the underlying philosophical issues
not only increases the intellectual depth of methodological discussions but
also paves the way for solving problems.

We find this strategy empowers students of methodology to evaluate
critically, and perhaps improve on, methodologies in practice. Rather than
approach alternative methodologies in practice as merely a menu of posi-
tions from which to choose, they may be grasped as attempted solu-
tions to problems with deep philosophical roots. Conversely, progress in
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methodology may challenge philosophers of science to reevaluate the
assumptions of their own philosophical theories. That is, after all, what
a genuinely naturalistic philosophy of method would require. A philosoph-
ical problem, once linked to methodology in practice, enjoys solutions from
the practical realm. For example, philosophers tend to assume that there
are an infinite number of models that fit finite data equally well, and so data
underdetermine hypotheses. Replacing “fit” with more rigorous measures of
adequacy can show that such underdetermination vanishes (Spanos, 2007).
This brings us to the last broad topic we consider throughout the volume.

We place it under the heading of metaphilosophical themes. Just as we
know that evidence in science may be “theory-laden” – interpreted from
the perspective of a background theory or set of assumptions – our philo-
sophical theories (about evidence, inference, science) often color our philo-
sophical arguments and conclusions (Rosenberg, 1992). The contributions
in this volume reveal a good deal about these “philosophy-laden” aspects of
philosophies of science. These revelations, moreover, are directly relevant to
what is needed to construct a sound foundation for methodology in prac-
tice. The payoff is that understanding the obstacles to solving philosophical
problems (the focus of Chapters 1–5) offers a clear comprehension of how
to relate traditional philosophy of science to contemporary methodological
and foundational problems of practice (the focus of Chapters 6–9).

4 Exchanges on E.R.R.O.R.

We organize the key themes of the entire volume under two interrelated
categories:

(1) experimental reasoning (empirical inference) and reliability, and
(2) objectivity and rationality of science.

Although we leave these terms ambiguous in this introduction, they will be
elucidated as we proceed. Interrelationships between these two categories
immediately emerge. Scientific rationality and objectivity, after all, are gen-
erally identified by means of scientific methods: one’s conception of objec-
tivity and rationality in science leads to a conception of the requirements for
an adequate account of empirical inference and reasoning. The perceived
ability or inability to arrive at an account satisfying those requirements will
in turn direct one’s assessment of the possibility of objectivity and rationality
in science. Recognizing the intimate relationships between categories 1 and 2
propels us toward both understanding and making progress on recalcitrant
foundational problems about scientific inference. If, for example, empirical
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inference is thought to demand reliable rules of inductive inference, and if
it is decided that such rules are unobtainable, then one may either question
the rationality of science or instead devise a different notion of rationality
for which empirical methods exist. On the other hand, if we are able to
show that some methods are more robust than typically assumed, we may
be entitled to uphold a more robust conception of science. Under category 1,
we consider the nature and justification of experimental reasoning and the
relationship of experimental inference to appraising large-scale theories in
science.

4.1 Theory Testing and Explanation

Several contributors endorse the view that scientific progress is based on
accepting large-scale theories (e.g., Chalmers, Musgrave) as contrasted to
a view of progress based on the growth of more localized experimental
knowledge (Mayo). Can one operate with a single overarching view of
what is required for data to warrant an inference to H? Mayo says yes,
but most of the other contributors argue for multiple distinct notions of
evidence and inference. They do so for very different reasons. Some argue
for a distinction between large-scale theory testing and local experimental
inference. When it comes to large-scale theory testing, some claim that the
most one can argue is that a theory is, comparatively, the best tested so far
(Musgrave), or that a theory is justified by an “argument from coincidence”
(Chalmers). Others argue that a distinct kind of inference is possible when
the data are “not used” in constructing hypotheses or theories (“use-novel”
data), as opposed to data-dependent cases where an inference is, at best,
conditional on a theory (Worrall). Distinct concepts of evidence might
be identified according to different background knowledge (Achinstein).
Finally, different standards of evidence may be thought to emerge from
the necessity of considering different costs (Laudan). The relations between
testing and explanation often hover in the background of the discussion,
or they may arise explicitly (Chalmers, Glymour, Musgrave). What are the
explanatory virtues? And how do they relate to those of testing? Is there a
tension between explanation and testing?

4.2 What Are the Roles of Probability in Uncertain
Inference in Science?

These core questions are addressed both in philosophy of science, as well as
in statistics and modeling practice. Does probability arise to assign degrees
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of epistemic support or belief to hypotheses, or to characterize the reli-
ability of rules? A loose analogy exists between Popperian philosophers
and frequentist statisticians, on the one hand, and Carnapian philosophers
and Bayesian statisticians on the other. The latter hold that probability
needs to supply some degree of belief, support, or epistemic assignment
to hypotheses (Achinstein), a position that Popperians, or critical rational-
ists, dub ‘justificationism’ (Musgrave). Denying that such degrees may be
usefully supplied, Popperians, much like frequentists, advocate focusing on
the rationality of rules for inferring, accepting, or believing hypotheses. But
what properties must these rules have?

In formal statistical realms, the rules for inference are reliable by dint
of controlling error probabilities (Spanos, Cox and Mayo, Glymour). Can
analogous virtues be applied to informal realms of inductive inference? This
is the subject of lively debate in Chapters 1 to 5 in this volume. However,
statistical methods and models are subject to their own long-standing foun-
dational problems. Chapters 6 and 7 offer a contemporary update of these
problems from the frequentist philosophy perspective. Which methods can
be shown to ensure reliability or low long-run error probabilities? Even
if we can show they have good long-run properties, how is this relevant
for a particular inductive inference in science? These chapters represent
exchanges and shared efforts of the authors over the past four years to tackle
these problems as they arise in current statistical methodology. Interwo-
ven throughout this volume we consider the relevance of these answers to
analogous questions as they arise in philosophy of science.

4.3 Objectivity and Rationality of Science, Statistics, and Modeling

Despite the multiplicity of perspectives that the contributors bring to the
table, they all find themselves confronting a cluster of threats to objectivity
in observation and inference. Seeing how analogous questions arise in phi-
losophy and methodological practice sets the stage for the meeting ground
that creates new synergy.

� Does the fact that observational claims themselves have assumptions
introduce circularity into the experimental process?

� Can one objectively test assumptions linking actual data to statistical
models, and statistical inferences to substantive questions?

On the one hand, the philosophers’ demand to extricate assumptions raises
challenges that the practitioner tends to overlook; on the other hand,
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progress in methodology may point to a more subtle logic that gets around
the limits that give rise to philosophical skepticism.

What happens if methodological practice seems in conflict with philo-
sophical principles of objectivity? Some methodologists reason that if it is
common, if not necessary, to violate traditional prescriptions of scientific
objectivity in practice, then we should renounce objectivity (and perhaps
make our subjectivity explicit). That judgment is too quick. If intuitively
good scientific practice seems to violate what are thought to be requirements
of good science, we need to consider whether in such cases scientists guard
against the errors that their violation may permit.

To illustrate, consider one of the most pervasive questions that arises in
trying to distinguish genuine tests from ad hoc methods:

Is it legitimate to use the same data in both constructing and testing hypotheses?

This question arises in practice in terms of the legitimacy of data-mining,
double counting, data-snooping, and hunting for statistical significance. In
philosophy of science, it arises in terms of novelty requirements. Musgrave
(1974) was seminal in tackling the problems of how to define, and provide a
rationale for, preferring novel predictions in the Popper-Lakatos traditions.
However, these issues have never been fully resolved, and they continue to
be a source of debate. The question of the rationale for requiring novelty
arises explicitly in Chapter 4 (Worrall) and the associated exchange.

Lurking in the background of all of the contributions in this volume is the
intuition that good tests should avoid double-uses of data, that would result
in violating what we called the minimal scientific principle for evidence. Using
the same data to construct as well as test a hypothesis, it is feared, makes
it too easy to find accordance between the data and the hypothesis even if
the hypothesis is false. By uncovering how reliable learning may be retained
despite double-uses of data, we may be able to distinguish legitimate from
illegitimate double counting.

The relevance of this debate for practice is immediately apparent in the
second part of the volume where several examples of data-dependent mod-
eling and non-novel evidence arise: in accounting for selection effects, in
testing assumptions of statistical models, in empirical modeling in eco-
nomics, in algorithms for causal model discovery, and in obtaining legal
evidence.

This leads to our third cluster of issues that do not readily fit under
either category (1) or (2) – the host of “meta-level” issues regarding philo-
sophical assumptions (theory-laden philosophy) and the requirements of a
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successful two-way street between philosophy of science and methodological
practice.

The questions listed in Section 6 identify the central themes to be taken up
in this volume. The essays following the contributions are called “exchanges”
because they are the result of a back-and-forth discussion over a period of
several years. Each exchange begins by listing a small subset of these ques-
tions that is especially pertinent for reflecting on the particular contribution.

5 Using This Volume for Teaching

Our own experiences in teaching courses that blend philosophy of science
and methodology have influenced the way we arrange the material in this
volume. We have found it useful, for the first half of a course, to begin with a
core methodological paper in the given field, followed by selections from the
philosophical themes of Chapters 1–5, supplemented with 1–2 philosophical
articles from the references (e.g., from Lakatos, Kuhn, Popper). Then, one
might turn to selections from Chapters 6–9, supplemented with discipline-
specific collections of papers.∗ The set of questions listed in the next section
serves as a basis around which one might organize both halves of the course.
Because the exchange that follows each chapter elucidates some of the key
points of that contribution, readers may find it useful to read or glance at
the exchange first and then read the corresponding chapter.

6 Philosophical and Methodological Questions
Addressed in This Volume

6.1 Experimental Reasoning and Reliability

Theory Testing and Explanation

� Does theory appraisal demand a kind of reasoning distinct from local
experimental inferences?

� Can generalizations and theoretical claims ever be warranted with
severity?

� Are there reliable observational methods for discovering or inferring
causes?

� How can the gap between statistical and structural (e.g., causal) models
be bridged?

∗ A variety of modules for teaching may be found at the website: http://www.econ.vt
.edu/faculty/facultybios/spanos error inference.htm.
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� Must local experimental tests always be done within an overarching
theory or paradigm? If so, in what sense must the theory be assumed
or accepted?

� When does H ’s successful explanation of an effect warrant inferring
the truth or correctness of H?

� How do logical accounts of explanation link with logics of confirmation
and testing?

How to Characterize and Warrant Methods of Experimental Inference

� Can inductive or “ampliative” inference be warranted?
� Do experimental data so underdetermine general claims that war-

ranted inferences are limited to the specific confines in which the data
have been collected?

� Can we get beyond inductive skepticism by showing the existence of
reliable test rules?

� Can experimental virtues (e.g., reliability) be attained in nonexperi-
mental contexts?

� How should probability enter into experimental inference and testing:
by assigning degrees of belief or by characterizing the reliability of test
procedures?

� Do distinct uses of data in science require distinct criteria for warranted
inferences?

� How can methods for controlling long-run error probabilities be rele-
vant for inductive inference in science?

� Should scientific progress and rationality be framed in terms of large-
scale theory change?

� Does a piecemeal account of explanation entail a piecemeal account of
testing?

� Does an account of progress framed in terms of local experimental
inferences entail a nonrealist role for theories?

� Is it unscientific (ad hoc, degenerating) to use data in both constructing
and testing hypotheses?

� Is double counting problematic only when it leads to unreliable meth-
ods?

� How can we assign degrees of objective warrant or rational belief to
scientific hypotheses?

6.2 Objectivity and Rationality of Science
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� How can we assess the probabilities with which tests lead to erroneous
inferences (error probabilities)?

� Can an objective account of statistical inference be based on frequentist
methods? On Bayesian methods?

� Can assumptions of statistical models and methods be tested objec-
tively?

� Can assumptions linking statistical inferences to substantive questions
be tested objectively?

� What role should probabilistic/statistical accounts play in scrutinizing
methodological desiderata (e.g., explanatory virtues) and rules (e.g.,
avoiding irrelevant conjunction, varying evidence)?

� Do explanatory virtues promote truth, or do they conflict with well-
testedness?

� Does the latitude in specifying tests and criteria for accepting and
rejecting hypotheses preclude objectivity?

� Are the criteria for warranted evidence and inference relative to the
varying goals in using evidence?

6.3 Metaphilosophical Themes

Philosophy-Laden Philosophy of Science

� How do assumptions about the nature and justification of evidence
and inference influence philosophy of science? In the use of historical
episodes?

� How should we evaluate philosophical tools of logical analysis and
counterexamples?

� How should probabilistic/statistical accounts enter into solving philo-
sophical problems?

Responsibilities of the “Two-Way Street” between Philosophy and Practice

� What roles can or should philosophers play in methodological prob-
lems in practice? (Should they be in the business of improving practice
as well as clarifying, reconstructing, or justifying practice?)

� How does studying evidence and methods in practice challenge
assumptions that may go unattended in philosophy of science?



II The Error-Statistical Philosophy

The Preface of Error and the Growth of Experimental Knowledge (EGEK)
opens as follows:

Despite the challenges to and changes in traditional philosophy of science, one of its
primary tasks continues to be to explain if not also to justify, scientific methodologies
for learning about the world. To logical empiricist philosophers (Carnap, Reichen-
bach) the task was to show that science proceeds by objective rules for appraising
hypotheses. To that end many attempted to set out formal rules termed inductive
logics and confirmation theories. Alongside these stood Popper’s methodology of
appraisal based on falsification: evidence was to be used to falsify claims deduc-
tively rather than to build up inductive support. Both inductivist and falsificationist
approaches were plagued with numerous, often identical, philosophical problems
and paradoxes. Moreover, the entire view that science follows impartial algorithms
or logics was challenged by Kuhn (1962) and others. What methodological rules
there are often conflict and are sufficiently vague as to “justify” rival hypotheses.
Actual scientific debates often last for several decades and appear to require, for
their adjudication, a variety of other factors left out of philosophers’ accounts. The
challenge, if one is not to abandon the view that science is characterized by ratio-
nal methods of hypothesis appraisal, is either to develop more adequate models of
inductive inference or else to find some new account of scientific rationality. (Mayo,
1996, p. ix)

Work in EGEK sought a more adequate account of induction based on
a cluster of tools from statistical science, and this volume continues that
program, which we call the error-statistical account.

Contributions to this volume reflect some of the “challenges and changes”
in philosophy of science in the dozen years since EGEK, and the ensuing
dialogues may be seen to move us “Toward an Error-Statistical Philosophy
of Science” – as sketchily proposed in EGEK’s last chapter. Here we collect
for the reader some of its key features and future prospects.

15
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7 What Is Error Statistics?

Error statistics, as we use the term, has a dual dimension involving phi-
losophy and methodology. It refers to a standpoint regarding both (1) a
general philosophy of science and the roles probability plays in inductive
inference, and (2) a cluster of statistical tools, their interpretation, and
their justification. It is unified by a general attitude toward a fundamental
pair of questions of interest to philosophers of science and scientists in
general:

� How do we obtain reliable knowledge about the world despite error?
� What is the role of probability in making reliable inferences?

Here we sketch the error-statistical methodology, the statistical philos-
ophy associated with the methods (“error-statistical philosophy”), and
a philosophy of science corresponding to the error-statistical philo-
sophy.

7.1 Error-Statistical Philosophy

Under the umbrella of error-statistical methods, one may include all stan-
dard methods using error probabilities based on the relative frequencies of
errors in repeated sampling – often called sampling theory. In contrast to
traditional confirmation theories, probability arises not to measure degrees
of confirmation or belief in hypotheses but to quantify how frequently
methods are capable of discriminating between alternative hypotheses and
how reliably they facilitate the detection of error. These probabilistic prop-
erties of inference procedures are error frequencies or error probabilities.
The statistical methods of significance tests and confidence-interval esti-
mation are examples of formal error-statistical methods. Questions or
problems are addressed by means of hypotheses framed within statistical
models.

A statistical model (or family of models) gives the probability distribution
(or density) of the sample X = (X1, . . . , Xn), fX(x; �), which provides an
approximate or idealized representation of the underlying data-generating
process. Statistical hypotheses are typically couched in terms of an unknown
parameter, �, which governs the probability distribution (or density) of X.
Such hypotheses are claims about the data-generating process. In error
statistics, statistical inference procedures link special functions of the data,
d(X), known as statistics, to hypotheses of interest. All error probabilities
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stem from the distribution of d(X) evaluated under different hypothetical
values of parameter �.

Consider for example the case of a random sample X of size n from a
Normal distribution (N(�,1)) where we want to test the hypotheses:

H0: � = �0 vs. H1: � > �0.

The test statistic is d(X) = (X − �0)/�x, where X = (1/n)
∑n

i=1 Xi and

�x = (�/
√

n). Suppose the test rule T construes data x as evidence for a
discrepancy from �0 whenever d(x) > 1.96. The probability that the test
would indicate such evidence when in fact �0 is true is P(d(X) > 1.96;
H0) = .025. This gives us what is called the statistical significance level.
Objectivity stems from controlling the relevant error probabilities associated
with the particular inference procedure. In particular, the claimed error
probabilities approximate the actual (long-run) relative frequencies of error.
(See Chapters 6 and 7.)

Behavioristic and Evidential Construal. By a “statistical philosophy” we
understand a general concept of the aims and epistemological founda-
tions of a statistical methodology. To begin with, two different interpre-
tations of these methods may be given, along with diverging justifica-
tions. The first, and most well known, is the behavioristic construal. In this
case, tests are interpreted as tools for deciding “how to behave” in relation
to the phenomena under test and are justified in terms of their ability to
ensure low long-run errors. A nonbehavioristic or evidential construal must
interpret error-statistical tests (and other methods) as tools for achiev-
ing inferential and learning goals. How to provide a satisfactory eviden-
tial construal has been the locus of the most philosophically interesting
controversies and remains the major lacuna in using these methods for
philosophy of science. This is what the severity account is intended to
supply. However, there are contexts wherein the more behavioristic con-
strual is entirely appropriate, and it is retained within the “error-statistical”
umbrella.

Objectivity in Error Statistics. The inferential interpretation forms a cen-
tral part of what we refer to as error-statistical philosophy. Underlying this
philosophy is the concept of scientific objectivity: although knowledge gaps
leave plenty of room for biases, arbitrariness, and wishful thinking, in fact
we regularly come up against experiences that thwart our expectations
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and disagree with the predictions and theories we try to foist upon the
world – this affords objective constraints on which our critical capacity
is built. Getting it (at least approximately) right, and not merely ensuring
internal consistency or agreed-upon convention, is at the heart of objectively
orienting ourselves toward the world. Our ability to recognize when data fail
to match anticipations is what affords us the opportunity to systematically
improve our orientation in direct response to such disharmony. Failing to
falsify hypotheses, while rarely allowing their acceptance as true, warrants
the exclusion of various discrepancies, errors, or rivals, provided the test
had a high probability of uncovering such flaws, if they were present. In
those cases, we may infer that the discrepancies, rivals, or errors are ruled
out with severity.

We are not stymied by the fact that inferential tools have assumptions
but rather seek ways to ensure that the validity of inferences is not much
threatened by what is currently unknown. This condition may be secured
either because tools are robust against flawed assumptions or that sub-
sequent checks will detect (and often correct) them with high probabil-
ity. Attributes that go unattended in philosophies of confirmation occupy
important places in an account capable of satisfying error-statistical goals.
For example, explicit attention needs to be paid to communicating results to
set the stage for others to check, debate, and extend the inferences reached.
In this view, it must be part of any adequate statistical methodology to pro-
vide the means to address critical questions and to give information about
which conclusions are likely to stand up to further probing and where weak
spots remain.

Error-Statistical Framework of “Active” Inquiry. The error-statistical phi-
losophy conceives of statistics (or statistical science) very broadly to include
the conglomeration of systematic tools for collecting, modeling, and draw-
ing inferences from data, including purely “data-analytic” methods that
are normally not deemed “inferential.” For formal error-statistical tools to
link data, or data models, to primary scientific hypotheses, several different
statistical hypotheses may be called upon, each permitting an aspect of the
primary problem to be expressed and probed. An auxiliary or “secondary”
set of hypotheses is called upon to check the assumptions of other models
in the complex network.

The error statistician is concerned with the critical control of scientific
inferences by means of stringent probes of conjectured flaws and sources of
unreliability. Standard statistical hypotheses, while seeming oversimplified
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in and of themselves, are highly flexible and effective for the piecemeal
probes our error statistician seeks. Statistical hypotheses offer ways to couch
canonical flaws in inference. We list six overlapping errors:

1. Mistaking spurious for genuine correlations,
2. Mistaken directions of effects,
3. Mistaken values of parameters,
4. Mistakes about causal factors,
5. Mistaken assumptions of statistical models,
6. Mistakes in linking statistical inferences to substantive scientific

hypotheses.

The qualities we look for to express and test hypotheses about such infer-
ence errors are generally quite distinct from those traditionally sought in
appraising substantive scientific claims and theories. Although the overar-
ching goal is to find out what is (truly) the case about aspects of phenomena,
the hypotheses erected in the actual processes of finding things out are gen-
erally approximations and may even be deliberately false. Although we can-
not fully formalize, we can systematize the manifold steps and interrelated
checks that, taken together, constitute a full-bodied experimental inquiry.
Background knowledge enters the processes of designing, interpreting, and
combining statistical inferences in informal or semiformal ways – not, for
example, by prior probability distri-butions.

The picture corresponding to error statistics is one of an activist learner
in the midst of an inquiry with the goal of finding something out. We
want hypotheses that will allow for stringent testing so that if they pass we
have evidence of a genuine experimental effect. The goal of attaining such
well-probed hypotheses differs crucially from seeking highly probable ones
(however probability is interpreted). This recognition is the key to getting a
handle on long-standing Bayesian–frequentist debates.

The error statistical philosophy serves to guide the use and interpretation
of frequentist statistical tools so that we can distinguish the genuine foun-
dational differences from a host of familiar fallacies and caricatures that
have dominated 75 years of “statistics wars.” The time is ripe to get beyond
them.

7.2 Error Statistics and Philosophy of Science

The error-statistical philosophy alludes to the general methodological princi-
ples and foundations associated with frequentist error-statistical methods;
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it is the sort of thing that would be possessed by a statistician, when thinking
foundationally, or by a philosopher of statistics. By an error-statistical phi-
losophy of science, on the other hand, we have in mind the use of those tools,
appropriately adapted, to problems of philosophy of science: to model scien-
tific inference (actual or rational), to scrutinize principles of inference (e.g.,
preferring novel results, varying data), and to frame and tackle philosophi-
cal problems about evidence and inference (how to warrant data, pinpoint
blame for anomalies, and test models and theories). Nevertheless, each of
the features of the error-statistical philosophy has direct consequences for
the philosophy of science dimension.

To obtain a philosophical account of inference from the error-statistical
perspective, one would require forward-looking tools for finding things out,
not for reconstructing inferences as “rational” (in accordance with one or
another view of rationality). An adequate philosophy of evidence would
have to engage statistical methods for obtaining, debating, rejecting, and
affirming data. From this perspective, an account of scientific method that
begins its work only once well-defined evidence claims are available forfeits
the ability to be relevant to understanding the actual processes behind the
success of science. Because the contexts in which statistical methods are most
needed are ones that compel us to be most aware of the strategies scientists
use to cope with threats to reliability, the study of the nature of statistical
method in the collection, modeling, and analysis of data is an effective way
to articulate and warrant principles of evidence. In addition to paving the
way for richer and more realistic philosophies of science, we think, exam-
ining error-statistical methods sets the stage for solving or making progress
on long-standing philosophical problems about evidence and inductive
inference.

Where the recognition that data are always fallible presents a challenge to
traditional empiricist foundations, the cornerstone of statistical induction
is the ability to move from less accurate to more accurate data.

Where the best often thought “feasible” means getting it right in some
asymptotic long run, error-statistical methods enable specific precision to
be ensured in finite samples and supply ways to calculate how large the
sample size n needs to be for a given level of accuracy.

Where pinpointing blame for anomalies is thought to present insolu-
ble “Duhemian problems” and “underdetermination,” a central feature of
error-statistical tests is their capacity to evaluate error probabilities that hold
regardless of unknown background or “nuisance” parameters.

We now consider a principle that links (1) the error-statistical philosophy
and (2) an error-statistical philosophy of science.
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7.3 The Severity Principle

A method’s error probabilities refer to their performance characteristics in
a hypothetical sequence of repetitions. How are we to use error probabil-
ities of tools in warranting particular inferences? This leads to the general
question:

When do data x0 provide good evidence for or a good test of hypothesis H?

Our standpoint begins with the intuition described in the first part of this
chapter. We intuitively deny that data x0 are evidence for H if the inferential
procedure had very little chance of providing evidence against H, even if H
is false. We can call this the “weak” severity principle:

Severity Principle (Weak): Data x0 do not provide good evidence for
hypothesis H if x0 result from a test procedure with a very low probability
or capacity of having uncovered the falsity of H (even if H is incorrect).

Such a test, we would say, is insufficiently stringent or severe. The onus
is on the person claiming to have evidence for H to show that the claim
is not guilty of at least so egregious a lack of severity. Formal error-
statistical tools provide systematic ways to foster this goal and to determine
how well it has been met in any specific case. Although one might stop
with this negative conception (as perhaps Popperians do), we continue on
to the further, positive conception, which will comprise the full severity
principle:

Severity Principle (Full): Data x0 provide a good indication of or evidence
for hypothesis H (just) to the extent that test T has severely passed H
with x0.

The severity principle provides the rationale for error-statistical methods.
We distinguish the severity rationale from a more prevalent idea for how
procedures with low error probabilities become relevant to a particular
application; namely, since the procedure is rarely wrong, the probability
it is wrong in this case is low. In that view, we are justified in inferring
H because it was the output of a method that rarely errs. It is as if the
long-run error probability “rubs off” on each application. However, this
approach still does not quite get at the reasoning for the particular case
at hand, at least in nonbehavioristic contexts. The reliability of the rule
used to infer H is at most a necessary and not a sufficient condition to
warrant inferring H. All of these ideas will be fleshed out throughout the
volume.
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Passing a severe test can be encapsulated as follows:

A hypothesis H passes a severe test T with data x0 if

(S-1) x0 agrees with H, (for a suitable notion of “agreement”) and
(S-2) with very high probability, test T would have produced a result that

accords less well with H than does x0, if H were false or incorrect.

Severity, in our conception, somewhat in contrast to how it is often used, is
not a characteristic of a test in and of itself, but rather of the test T, a specific
test result x0, and a specific inference being entertained, H. Thereby, the
severity function has three arguments. We use SEV(T, x0, H) to abbreviate
“the severity with which H passes test T with data x0” (Mayo and Spanos,
2006).

The existing formal statistical testing apparatus does not include severity
assessments, but there are ways to use the error-statistical properties of tests,
together with the outcome x0, to evaluate a test’s severity. This is the key for
our inferential interpretation of error-statistical tests. The severity principle
underwrites this inferential interpretation and addresses chronic fallacies
and well-rehearsed criticisms associated with frequentist testing. Among
the most familiar of the often repeated criticisms of the use of significance
tests is that with large enough sample size, a small significance level can be
very probable, even if the underlying discrepancy � from null hypothesis
� = �0 is substantively trivial. Why suppose that practitioners are incapable
of mounting an interpretation of tests that reflects the test’s sensitivity? The
severity assessment associated with the observed significance level [p-value]
directly accomplishes this.

Let us return to the example of test T for the hypotheses: H0: � = 0 vs.
H1: � > 0. We see right away that the same value of d(x0) (and thus the same
p-value) gives different severity assessments for a given inference when n
changes.

In particular, suppose one is interested in the discrepancy � = .2, so we
wish to evaluate the inference � > .2. Suppose the same d(x0) = 3 resulted
from two different sample sizes, n = 25 and n = 400. For n = 25, the severity
associated with � > .2 is .97, but for n = 400 the severity associated with
� > .2 is .16. So the same d(x0) gives a strong warrant for � > .2 when n =
25, but provides very poor evidence for � > .2 when n = 400.

More generally, an �-significant difference with n1 passes � > �1 less
severely than with n2 where n1 > n2. With this simple interpretive tool, all
of the variations on “large n criticisms” are immediately scotched (Cohen,
1994, Lindley, 1957, Howson and Urbach, 1993, inter alia). (See Mayo and
Spanos, 2006, and in this volume, Chapter 7).
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Getting around these criticisms and fallacies is essential to provide an
adequate philosophy for error statistics as well as to employ these ideas in
philosophy of science.

The place to begin, we think, is with general philosophy of science, as we
do in this volume.

8 Error-Statistical Philosophy of Science

Issues of statistical philosophy, as we use that term, concern methodological
and epistemological issues surrounding statistical science; they are matters
likely to engage philosophers of statistics and statistical practitioners inter-
ested in the foundations of their methods. Philosophers of science generally
find those issues too specialized or too technical for the philosophical prob-
lems as they are usually framed. By and large, this leads philosophers of
science to forfeit the insights that statistical science and statistical philos-
ophy could offer for the general problems of evidence and inference they
care about. To remedy this, we set out the distinct category of an error-
statistical philosophy of science. An error-statistical philosophy of science
alludes to the various interrelated ways in which error-statistical methods
and their interpretation and rationale are relevant for three main projects
in philosophy of science: to characterize scientific inference and inquiry,
solve problems about evidence and inference, and appraise methodological
rules.

The conception of inference and inquiry would be analogous to the
piecemeal manner in which error statisticians relate raw data to data mod-
els, to statistical hypotheses, and to substantive claims and questions. Even
where the collection, modeling, and analysis of data are not explicitly car-
ried out using formal statistics, the limitations and noise of learning from
limited data invariably introduce errors and variability, which suggests that
formal statistical ideas are more useful than deductive logical accounts
often appealed to by philosophers of science. Were we to move toward
an error-statistical philosophy of science, statistical theory and its founda-
tions would become a new formal apparatus for the philosophy of science,
supplementing the more familiar tools of deductive logic and probability
theory.

The indirect and piecemeal nature of this use of statistical methods is
what enables it to serve as a forward-looking account of ampliative (or
inductive) inference, not an after-the-fact reconstruction of past episodes
and completed experiments. Although a single inquiry involves a network of
models, an overall “logic” of experimental inference may be identified: data
x0 indicate the correctness of hypothesis H to the extent that H passes a stringent
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or severe test with x0. Whether the criterion for warranted inference is put
in terms of severity or reliability or degree of corroboration, problems of
induction become experimental problems of how to control and assess the
error probabilities needed to satisfy this requirement. Unlike the traditional
“logical problem of induction,” this experimental variant is solvable.

Methodological rules are regarded as claims about strategies for coping
with and learning from errors in furthering the overarching goal of severe
testing. Equally important is the ability to use inseverity to learn what is
not warranted and to pinpoint fruitful experiments to try next. From this
perspective, one would revisit philosophical debates surrounding double
counting and novelty, randomized studies, the value of varying the data,
and replication. As we will see in the chapters that follow, rather than give all-
or-nothing pronouncements on the value of methodological prescriptions,
we obtain a more nuanced and context-dependent analysis of when and
why they work.

8.1 Informal Severity and Arguing from Error

In the quasi-formal and informal settings of scientific inference, the severe
test reasoning corresponds to the basic principle that if a procedure had very
low probability of detecting an error if it is present, then failing to signal the
presence of the error is poor evidence for its absence. Failing to signal an error
(in some claim or inference H) corresponds to the data being in accord with
(or “fitting”) some hypothesis H. This is a variant of the minimal scientific
requirement for evidence noted in part I of this chapter. Although one can
get surprising mileage from this negative principle alone, we embrace the
positive side of the full severity principle, which has the following informal
counterpart:

Arguing from Error: An error or fault is absent when (and only to the extent
that) a procedure of inquiry with a high probability of detecting the error if
and only if it is present, nevertheless detects no error.

We argue that an error is absent if it fails to be signaled by a highly severe
error probe.

The strongest severity arguments do not generally require formal statis-
tics. We can retain the probabilistic definition of severity in the general
context that arises in philosophical discussions, so long as we keep in mind
that it serves as a brief capsule of the much more vivid context-specific
arguments that flesh out the severity criterion when it is clearly satisfied or
flagrantly violated.
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We can inductively infer the absence of any error that has been well probed
and ruled out with severity. It is important to emphasize that an “error”
is understood as any mistaken claim or inference about the phenomenon
being probed – theoretical or non-theoretical (see exchanges with Chalmers
and Musgrave). Doubtless, this seems to be a nonstandard use of “error.”
We introduce this concept of error because it facilitates the assessment of
severity appropriate to the particular local inference – it directs one to
consider the particular inferential mistake that would have to be ruled out
for the data to afford evidence for H. Although “H is false” refers to a specific
error, it is meant to encompass erroneous claims about underlying causes
and mistaken understandings of any testable aspect of a phenomenon of
interest. Often the parameter in a statistical model directly parallels the
theoretical quantity in a substantive theory or proto-theory.

Degrees of severity might be available, but in informal assessments it
suffices to consider qualitative classifications (e.g., highly, reasonably well,
or poorly probed). This threshold-type construal of severity is all that will
be needed in many of the discussions that follow. In our philosophy of
inference, if H is not reasonably well probed, then it should be regarded as
poorly probed. Even where H is known to be true, a test that did a poor job
in probing its flaws would fail to supply good evidence for H.

Note that we choose to couch all claims about evidence and inference in
testing language, although one is free to deviate from this. Our idea is to
emphasize the need to have done something to check errors before claiming
to have evidence; but the reader must not suppose our idea of inference is
limited to the familiar view of tests as starting out with hypotheses, nor that
it is irrelevant for cases described as estimation. One may start with data
and arrive at well-tested hypotheses, and any case of statistical estimation
can be put into testing terms.

Combining Tests in an Inquiry. Although it is convenient to continue to
speak of a severe test T in the realm of substantive scientific inference (as do
several of the contributors), it should be emphasized that reference to “test
T” may actually, and usually does, combine individual tests and inferences
together; likewise, the data may combine results of several tests. To avoid
confusion, it may be necessary to distinguish whether we have in mind
several tests or a given test – a single data set or all information relevant to
a given problem.

Severity, Corroboration, and Belief. Is the degree of severity accorded H
with x0 any different from a degree of confirmation or belief? While a
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hypothesis that passes with high severity may well warrant the belief that it
is correct, the entire logic is importantly different from a “logic of belief” or
confirmation. For one thing, I may be warranted in strongly believing H and
yet deny that this particular test and data warrant inferring H. For another,
the logic of probability does not hold. For example, that H is poorly tested
does not mean “not H” is well tested. There is no objection to substituting
“H passes severely with x0 from test T” with the simpler form of “data x0

from test T corroborate H” (as Popper suggested), so long as it is correctly
understood. A logic of severity (or corroboration) could be developed – a
futuristic project that would offer a rich agenda of tantalizing philosophical
issues.

We have sketched key features of the error statistical philosophy to set the
stage for the exchanges to follow. It will be clear at once that our contributors
take issue with some or all of its core elements. True to the error-statistical
principle of learning from stringent probes and stress tests, the contribu-
tors to this volume serve directly or indirectly to raise points of challenge.
Notably, while granting the emphasis on local experimental testing pro-
vides “a useful corrective to some of the excesses of the theory-dominated
approach” (Chalmers 1999, p. 206), there is also a (healthy) skepticism as
to whether the account can make good on some of its promises, at least
without compromising on the demands of severe testing. The tendency
toward “theory domination” in contemporary philosophy of science stems
not just from a passion with high-level physics (we like physics too) but is
interestingly linked to the felt shortcomings in philosophical attempts to
solve problems of evidence and inference. If we have come up short in jus-
tifying inductive inferences in science, many conclude, we must recognize
that such inferences depend on accepting or assuming various theories or
generalizations and laws. It is only thanks to already accepting a background
theory or paradigm T that inductive inferences can get off the ground. How
then to warrant theory T? If the need for an empirical account to warrant
T appears to take one full circle, T ’s acceptance may be based on appeals to
explanatory, pragmatic, metaphysical, or other criteria. One popular view is
that a theory is to be accepted if it is the “best explanation” among existing
rivals, for a given account of explanation, of which there are many. The
error-statistical account of local testing, some may claim, cannot escape the
circle: it will invariably require a separate account of theory appraisal if it is
to capture and explain the success of science. This takes us to the question

8. Local Tests and Theory Appraisal2
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asked in Chapter 1 of this volume: What would an adequate error-statistical
account of large-scale theory testing be?
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ONE

Learning from Error, Severe Testing, and
the Growth of Theoretical Knowledge

Deborah G. Mayo

I regard it as an outstanding and pressing problem in the philosophy of the natural
sciences to augment the insights of the new experimentalists with a correspond-
ingly updated account of the role or roles of theory in the experimental sciences,
substantiated by detailed case studies. (Chalmers, 1999, p. 251)

1 Background to the Discussion

The goal of this chapter is to take up the aforementioned challenge as
it is posed by Alan Chalmers (1999, 2002), John Earman (1992), Larry
Laudan (1997), and other philosophers of science. It may be seen as a first
step in taking up some unfinished business noted a decade ago: “How far
experimental knowledge can take us in understanding theoretical entities
and processes is not something that should be decided before exploring this
approach much further” (Mayo, 1996, p. 13). We begin with a sketch of the
resources and limitations of the “new experimentalist” philosophy.

Learning from evidence, in this experimentalist philosophy, depends not
on appraising large-scale theories but on local experimental tasks of esti-
mating backgrounds, modeling data, distinguishing experimental effects,
and discriminating signals from noise. The growth of knowledge has not to
do with replacing or confirming or probabilifying or “rationally accepting”
large-scale theories, but with testing specific hypotheses in such a way that
there is a good chance of learning something – whatever theory it winds up
as part of. This learning, in the particular experimental account we favor,
proceeds by testing experimental hypotheses and inferring those that pass
probative or severe tests – tests that would have unearthed some error in, or
discrepancy from, a hypothesis H, were H false. What enables this account
of severity to work is that the immediate hypothesis H under test by means

28
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of data is designed to be a specific and local claim (e.g., about parameter
values, causes, the reliability of an effect, or experimental assumptions). “H
is false” is not a disjunction of all possible rival explanations of the data, at
all levels of complexity; that is, it is not the so-called catchall hypothesis but
refers instead to a specific error being probed.

1.1 What Is the Problem?

These features of piecemeal testing enable one to exhaust the possible
answers to a specific question; the price of this localization is that one
is not entitled to regard full or large-scale theories as having passed severe
tests, so long as they contain hypotheses and predictions that have not been
well probed. If scientific progress is thought to turn on appraising high-level
theories, then this type of localized account of testing will be regarded as
guilty of a serious omission, unless it is supplemented with an account of
theory appraisal.

1.2 The Comparativist Rescue

A proposed remedy is to weaken the requirement so that a large-scale theory
is allowed to pass severely so long as it is the “best-tested” theory so far, in
some sense. Take Laudan:

[W]hen we ask whether [the General Theory of Relativity] GTR can be rationally
accepted, we are not asking whether it has passed tests which it would almost
certainly fail if it were false. As Mayo acknowledges, we can rarely if ever make such
judgments about most of the general theories of the science. But we can ask “Has
GTR passed tests which none of its known rivals have passed, while failing none
which those rivals have passed.” Answering such a question requires no herculean
enumeration of all the possible hypotheses for explaining the events in a domain.
(Laudan, 1997, p. 314)

We take up this kind of comparativist appraisal and argue that it is no
remedy; rather, it conflicts with essential ingredients of the severity account –
both with respect to the “life of experiment” and to the new arena, the “life
of theory.”

1.3 Is Severity Too Severe?

One of the main reasons some charge that we need an account showing
acceptance of high-level theories is that scientists in fact seem to accept
them; without such an account, it is said, we could hardly make sense
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of scientific practice. After all, these philosophers point out, scientists set
about probing and testing theories in areas beyond those in which they
have been well tested. While this is obviously true, we question why it is
supposed that in doing so scientists are implicitly accepting all of the theory
in question. On the contrary, we argue, this behavior of scientists seems to
underscore the importance of distinguishing areas that are from those that
are not (thus far) well tested; such a distinction would be blurred if a full
theory is accepted when only portions have been well probed. Similarly,
we can grant Earman’s point that “in 1918 and 1919 physicists were in no
position to be confident that the vast and then unexplored space of possible
gravitational theories denoted by [not-GTR] does not contain alternatives
to GTR that yield that same prediction for the bending of light as GTR”
(Earman, 1992, p. 117), while asking why this shows our account of severity
is too severe rather than being a point in its favor. It seems to us that being
prohibited from regarding GTR as having passed severely, at that stage, is
just what an account ought to do. At the same time, the existence of what
Earman aptly dubs a “zoo of alternatives” to GTR did not prevent scientists
from severely probing and passing claims about light-bending and, more
generally, extending their knowledge of gravity. We shall return to consider
GTR later.

1.4 The Challenge

We welcome the call to provide the “life of experiment” with a corresponding
“life of theory”: the challenge leads to extending the experimental testing
account into that arena in ways that we, admittedly, had not been sufficiently
clear about or had not even noticed. In particular, taking up the large-scale
theory challenge leads to filling in some gaps regarding the issues of (1) how
far a severity assessment can extend beyond the precise experimental domain
tested and (2) what can be said regarding hypotheses and claims that fail
to have passed severe tests. Regarding the first issue, we argue that we can
inductively infer the absence of any error that has been well probed and
ruled out with severity. Although “H is false” refers to a specific error, this
may and should encompass erroneous claims about underlying causes and
mistaken understandings of any testable aspect of a phenomenon of interest.
Concerning the second issue, we wish to explore the value of understanding
why evidence may prohibit inferring a full theory severely – how it helps in
systematically setting out rivals and partitioning the ways we can be in error
regarding the claims that have so far agreed with data.
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Thus, we accept the challenge in the epigraph, but in addition wish to
“raise the stakes” on what an adequate account of theory appraisal should
provide. More than affording an after-the-fact reconstruction of past cases of
theory appraisal, an adequate account should give forward-looking methods
for making progress in both building and appraising theories. We begin in
Section 2 by considering the severity account of evidence; then in Section
3, we consider some implications for high-level theory. In Section 4, we
examine and reject the “comparativist rescue” and in Section 5, we take up
the case of theory testing of GTR. Our issue – let me be clear at the outset –
is not about whether to be a realist about theories; in fact the same criticisms
are raised by philosophers on both sides of this divide. Thus, in what follows
we try to keep to language used by realists and nonrealists alike.

2 Error-Statistical Account of Evidence

2.1 Severity Requirement

Let us begin with a very informal example. Suppose we are testing whether
and how much weight has been gained between now and the time George
left for Paris, and we do so by checking if any difference shows up on a series
of well-calibrated and stable weighing methods, both before his leaving
and upon his return. If no change on any of these scales is registered, even
though, say, they easily detect a difference when he lifts a 0.1-pound potato,
then this may be regarded as grounds for inferring that George’s weight gain
is negligible within limits set by the sensitivity of the scales. The hypothesis
H here might be that George’s weight gain is no greater than �, where �

is an amount easily detected by these scales. H, we would say, has passed
a severe test: were George to have gained � pounds or more (i.e., were H
false), then this method would almost certainly have detected this. Clearly
H has been subjected to, and has passed, a more stringent test than if, say,
H were inferred based solely on his still being able to button elastic-waist
pants. The same reasoning abounds in science and statistics (p. 256).

Consider data on light-bending as tests of the deflection effect � given
in Einstein’s GTR. It is clear that data based on very long baseline radio
interferometry (VLBI) in the 1970s taught us much more about, and pro-
vided much better evidence for the Einsteinian-predicted light deflection
(often set these days at 1) than did the passing result from the celebrated
1919 eclipse tests. The interferometry tests are far more capable of uncover-
ing a variety of errors, and discriminating values of the deflection, �, than
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were the crude eclipse tests. Thus, the results set more precise bounds on
how far a gravitational theory can differ from the GTR value for �. Likewise,
currently-planned laser interferometry tests would probe discrepancies even
more severely than any previous tests.

We set out a conception of evidence for a claim or hypothesis H:

Severity Principle (SP): Data x (produced by process G) provides a good indication
or evidence for hypothesis H if and only if x results from a test procedure T which,
taken as a whole, constitutes H having passed a severe test – that is, a procedure
which would have, at least with very high probability, uncovered the falsity of, or
discrepancies from H, and yet no such error is detected.

Instead, the test produces results that are in accord with (or fit) what would
be expected under the supposition that H is correct, as regards the aspect
probed.

While a full explication of severity is developed throughout this volume
(e.g., introductory chapter), we try to say enough for current purposes. To
begin with, except for formal statistical contexts, “probability” here may
serve merely to pay obeisance to the fact that all empirical claims are strictly
fallible. Take, for example, the weighing case: if the scales work reliably
and to good precision when checked on test objects with known weight,
we would ask, rightly, what sort of extraordinary circumstance could cause
them to all go systematically astray just when we do not know the weight
of the test object (George)? We would infer that his weight gain does not
exceed such-and-such amount, without any explicit probability model.1

Indeed, the most forceful severity arguments usually do not require explicit
reference to probability or statistical models. We can retain the probabilistic
definition of severity so long as it is kept in mind that it covers this more
informal use of the term. Furthermore, the role of probability where it does
arise, it is important to see, is not to assign degrees of confirmation or
support or belief to hypotheses but to characterize how frequently methods
are capable of detecting and discriminating errors, called error frequencies
or error probabilities. Thus, an account of evidence broadly based on error
probabilities may be called an error-statistical account, and a philosophy of
science based on this account of evidence may be called an error-statistical
philosophy of science (see Introduction and Background, Part II).

1 Even in technical areas, such as in engineering, it is not uncommon to work without a well-
specified probability model for catastrophic events. In one such variation, H is regarded as
having passed a severe test if an erroneous inference concerning H could result only under
extraordinary circumstances. (Ben-Haim, 2001, p. 214)
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The severe test reasoning corresponds to a variation of an “argument
from error” (p. 24):

Argument from Error: There is evidence that an error is absent when a procedure
of inquiry with a high probability of detecting the error’s presence nevertheless
regularly yields results in accord with no error.

By “detecting” an error, we mean it “signals the presence of” an error; we
generally do not know from the observed signal whether it has correctly done
so. Since any inductive inference could be written as inferring the absence of
an error of some type, the argument from error is entirely general. Formal
error-statistical tests provide tools to ensure that errors will be correctly
detected (i.e., signaled) with high probabilities.2

2.2 Some Further Qualifications

The simple idea underlying the severity principle (SP), once unpacked
thoroughly, provides a very robust concept of evidence. We make some
quick points of most relevance to theory testing: Since we will use T for
theory, let E denote an experimental test.3 First, although it is convenient
to speak of a severe test E, it should be emphasized that E may actually, and
usually does, combine individual tests and inferences together; likewise, data
x may combine results of several tests. So long as one is explicit about the test
E being referred to, no confusion results. Second, a severity assessment is a
function of a particular set of data or evidence x and a particular hypothesis
or claim. More precisely, it has three arguments: a test, an outcome or result,
and an inference or a claim. “The severity with which H passes test E with
outcome x” may be abbreviated as SEV(Test E, outcome x, claim H). When
x and E are clear, we may write SEV(H). Defining severity in terms of three
arguments is in contrast with a common tendency to speak of a “severe test”
divorced from the specific inference at hand. This common tendency leads
to fallacies we need to avoid. A test may be made so sensitive (or powerful)
that discrepancies from a hypothesis H are inferred too readily. However,
the severity associated with such an inference is decreased as test sensitivity

2 Control of error rates, even if repetitions are hypothetical, allows the probativeness of
this test to be assessed for reliably making this inference (see chapter 7). Nevertheless,
low long-run error rates at individual stages of a complex inquiry (e.g., the error budgets
in astronomic inferences) play an important role in the overall severity evaluation of a
primary inference.

3 Experiments, for us, do not require literal control; it suffices to be able to develop and
critique arguments from error, which include the best practices in observational inquiries
and model specification and validation. Nor need “thought experiments” be excluded.
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increases (not the reverse). For example, we expect our interferometry test
to yield some nonzero difference from the GTR prediction (� = 1), the null
hypothesis of the test, even if � = 1. To interpret any observed difference,
regardless of how small, as signaling a substantive discrepancy from the
GTR prediction would be to infer a hypothesis with very low severity. That
is because this test would very often purport to have evidence of a genuine
discrepancy from � = 1, even if the GTR prediction is correct (perhaps
within a specified approximation).

The single notion of severity suffices to direct the interpretation and
scrutiny of the two types of errors in statistics: erroneously rejecting a
statistical (null) hypothesis h0 – type I error – and erroneously failing to
reject h0 (sometimes abbreviated as “accepting” h0) – type II error. The
actual inference, H, will generally go beyond the stark formal statistical
output. For example, from a statistical rejection of h0, one might infer:

H: x is evidence of a discrepancy � from h0.

Then calculating SEV(H) directs one to consider the probability of a type I
error.

If h0 is not rejected, the hypothesis inferred might take the form:

H: x is evidence that any discrepancy from h0 is less than �.

Now the type II error probability (corresponding to �) becomes relevant.
Severity, as a criterion for evidence, avoids standard statistical fallacies due
both to tests that are overly sensitive and to those insufficiently sensitive
to particular errors and discrepancies (e.g., statistical vs. substantive differ-
ences; see Mayo, 1996; Mayo and Spanos, 2006).

Note that we always construe the question of evidence using testing
language, even if it is described as an estimation procedure, because this is
our general terminology for evidence, and any such question can be put in
these terms. Also, the locution “severely tested” hypothesis H will always
mean that H has passed the severe or stringent probe, not, for example,
merely that H was subjected to one.

2.3 Models of Inquiry

An important ingredient of this account of testing is the insistence on
avoiding oversimplifications of accounts that begin with statements of evi-
dence and hypotheses overlooking the complex series of models required in
inquiry, stretching from low-level theories of data and experiment to high-
level hypotheses and theories. To discuss these different pieces, questions,
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or problems, we need a framework that lets us distinguish the steps involved
in any realistic experimental inquiry and locate the necessary background
information and the errors being probed – even more so when attempting
to relate low-level tests to high-level theories. To organize these intercon-
nected pieces, it helps to view any given inquiry as involving a primary
question or problem, which is then embedded and addressed within one or
more other models which we may call “experimental”.4 Secondary questions
would include a variety of inferences involved in probing answers to the pri-
mary question (e.g., How well was the test run? Are its assumptions satisfied
by the data in hand?). The primary question, couched in an appropriate
experimental model, may be investigated by means of properly modeled
data, not “raw” data. Only then can we adequately discuss the inferential
move (or test) from the data (data model) to the primary claim H (through
the experimental model E). Take the interferometric example. The primary
question – determining the value of the GTR parameter, � – is couched
in terms of parameters of an astrometric model M which (combined with
knowledge of systematic and nonsystematic errors and processes) may allow
raw data, adequately modeled, to estimate parameters in M to provide infor-
mation about � (the deflection of light). We return to this in Section 5.

How to carve out these different models, each sometimes associated with
a level in a hierarchy (e.g., Suppes, 1969) is not a cut-and-dried affair, but so
long as we have an apparatus to make needed distinctions, this leeway poses
no danger. Fortunately, philosophers of science have become increasingly
aware of the roles of models in serving as “mediators,” to use an apt phrase
from Morrison and Morgan (1999), and we can turn to the central issue of
this paper.5

3 Error-Statistical Account and Large-Scale Theory Testing

This localized, piecemeal testing does have something to say when it comes
to probing large-scale theories, even if there is no intention to severely
pass the entire theory. Even large-scale theories when we have them (in
our account) are applied and probed only by a piecemeal testing of local

4 This is akin to what Spanos calls the “estimable” model; see Chapter 6, this volume. See
also note 3.

5 Background knowledge, coming in whatever forms available – subject matter, instrumen-
tal, simulations, robustness arguments – enters to substantiate the severity argument. We
think it is best to delineate such information within the relevant models rather than insert
a great big “B” for “background” in the SEV relation, especially because these assumptions
must be separately probed.
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experimental hypotheses. Rival theories T1 and T2 of a given phenomenon
or domain, even when corresponding to very different primary models (or
rather, very different answers to primary questions), need to be applicable
to the same data models, particularly if T2 is to be a possible replacement for
T1. This constraint motivates the development of procedures for rendering
rivals applicable to shared data models.

3.1 Implications of the Piecemeal Account for Large-Scale Testing

Several implications or groups of theses emerge fairly directly from our
account, and we begin by listing them:

1. Large-scale theories are not severely tested all at once. To say that a given
experiment E is a test of theory T is an equivocal way of saying that E
probes what T says about a particular phenomenon or experimental
effect (i.e., E attempts to discriminate the answers to a specific ques-
tion, H). We abbreviate what theory Ti says about H as Ti(H). This
is consistent with the common scientific reports of “testing GTR”
when in fact what is meant is that a particular aspect or parameter
is going to be probed or delimited to a high precision. Likewise, the
theory’s passing (sometimes with “flying colors”) strictly refers to the
one piecemeal question or estimate that has passed severely (e.g., Will,
1993).

2. A severity assessment is not threatened by alternatives at “higher
levels.” If two rival theories, T1 and T2, say the same thing with
respect to the effect or hypothesis H being tested by experimental test E
(i.e., T1(H) = T2(H)), then T1 and T2 are not rivals with respect to
experiment E. Thus, a severity assessment can remain stable through
changes in “higher level” theories6 or answers to different questions.
For example, the severity with which a parameter is determined may
remain despite changing interpretations about the cause of the effect
measured (see Mayo, 1997b).

3. Severity discriminates between theories that “fit” the data equally well.
T1 is discriminated from T2 (whether known, or a “beast lurking in
the bush”7) by identifying and testing experimental hypotheses on
which they disagree (i.e., where T1(H) �= T2(H)). Even though two
rival hypotheses might “fit” the data equally well, they will not generally
be equally severely tested by experimental test E.

6 Here we follow Suppes (1969) in placing the models in a vertical hierarchy from the closest
to the farthest from data.

7 We allude here to a phrase in Earman (1992).
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The preceding points, as we will see, concern themselves with reliability,
stability, and avoidance of serious underdetermination, respectively.

3.2 Contrast with a Bayesian Account of Appraisal

At this point, it is useful to briefly contrast these consequences with an
approach, better known among philosophers to the inductive appraisal of
hypotheses: the Bayesian approach. Data x may be regarded as strong evi-
dence for, or as highly confirming of, theory T so long as the posterior prob-
ability of T given x is sufficiently high (or sufficiently higher than the prior
probability in T),8 where probability is generally understood as a measure
of degree of belief, and P(T|x) is calculated by means of Bayes’s theorem:

P(T |x) = P(x|T)P(T)/[P(x|T)P(T) + P(x|not-T)P(not-T)]

This calculation requires an exhaustive set of alternatives to T and prior
degree-of-belief assignments to each, and an assessment of the term P(x|not-
T), for “not-T,” the catchall hypothesis. That scientists would disagree in
their degree-of-belief probability assignments is something accepted and
expected at least by subjectivist Bayesians.9

In one sense, it is simplicity itself for a (subjective) Bayesian to confirm
a full theory T. For a familiar illustration, suppose that theory T accords
with data x so that P(x|T) = 1, and assume equal prior degrees of belief
for T and not-T. If the data are regarded as very improbable given that
theory T is false – if a low degree of belief, say e, is accorded to what may be
called the Bayesian catchall factor, P(x|not-T) – then we get a high posterior
probability in theory T; that is, P(T|x) = 1/(1 + e). The central problem is
this: What warrants taking data x as incredible under any theory other than
T, when these would include all possible rivals, including those not even
thought of? We are faced with the difficulty Earman raised (see 1.3), and it
also raises well-known problems for Bayesians.

High Bayesian support does not suffice for well-testedness in the sense of
the severity requirement. The severity requirement enjoins us to consider
this Bayesian procedure: basically, it is to go from a low degree of belief in
the Bayesian catchall factor to inferring T as confirmed. One clearly cannot
vouch for the reliability of such a procedure – that it would rarely affirm
theory T were T false – in contrast to point 1 above. Similar problems

8 Several related measures of Bayesian confirmation may be given. See, for example, Good
(1983).

9 Some might try to assign priors by appealing to ideas about simplicity or information
content, but these have their own problems (e.g., Cox, 2006; Kass and Wasserman, 1996).
See Chapter 7, pp. 298–302.
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confront the Bayesian dealing with data that are anomalous for a theory T
(e.g., in confronting Duhemian problems). An anomaly x′ warrants Bayesian
disconfirmation of an auxiliary hypothesis A (used to derive prediction x),
so long as the prior belief in T is sufficiently high and the Bayesian catchall
factor is sufficiently low (see, e.g., Dorling, 1979). The correctness of hypoth-
esis A need not have been probed in its own right. For example, strictly speak-
ing, believing more strongly in Newton’s than in Einstein’s gravitational
theory in 1919 permits the Bayesian to blame the eclipse anomaly on, say, a
faulty telescope, even without evidence for attributing blame to the instru-
ment (see Mayo, 1997a; Worrall, 1993; and Chapters 4 and 8, this volume).

Consider now the assurance about stability in point 2. Operating with
a “single probability pie,” as it were, the Bayesian has the difficulty of
redistributing assignments if a new theory is introduced. Finally, consider
the more subtle point 3. For the Bayesian, two theories that “fit” the data
x equally well (i.e., have identical likelihoods) are differentially supported
only if their prior probability assignments differ. This leads to difficulties in
capturing methodological strictures that seem important in discriminating
two equally well-fitting hypotheses (or even the same hypothesis) based
on the manner in which each hypothesis was constructed or selected for
testing. We return to this in Section 5. Further difficulties are well known
(e.g., the “old evidence problem,” Glymour, 1980; Kyburg, 1993) but will
not be considered.

I leave it to Bayesians to mitigate these problems, if problems they be for
the Bayesian. Of interest to us is that it is precisely to avoid these problems,
most especially consideration of the dreaded catchall hypothesis and the
associated prior probability assignments, that many are led to a version of a
comparativist approach (e.g., in the style of Popper or Lakatos).

3.3 The Holist–Comparativist Rescue

One can see from my first point in Section 3.1 why philosophers who
view progress in terms of large-scale theory change are led to advocate a
comparative testing account. Because a large-scale theory may, at any given
time, contain hypotheses and predictions that have not been probed at all,
it would seem impossible to say that such a large-scale theory had severely
passed a test as a whole.10 A comparative testing account, however, would

10 Note how this lets us avoid tacking paradoxes: Even if H has passed severely with data x,
if x fails to probe hypothesis J, then x fails to severely pass H and J (see Chalmers, 1999).
By contrast, Bayesians seem content to show that x confirms the irrelevant conjunction
less strongly than the conjunct (see Chapter 8, this volume). For a recent discussion and
references, see Fitelson (2002).
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allow us to say that the theory is best tested so far, or, using Popperian terms,
we should “prefer” it so far. Note that their idea is not merely that testing
should be comparative – the severe testing account, after all, tests H against
its denial within a given model or space – but rather that testing, at least
testing large-scale theories, may and generally will be a comparison between
nonexhaustive hypotheses or theories. The comparativist reasoning, in other
words, is that since we will not be able to test a theory against its denial
(regarded as the “catchall hypothesis”), we should settle for testing it against
one or more existing rivals. Their position, further, is that one may regard
a theory as having been well or severely tested as a whole, so long as it has
passed more or better tests than its existing rival(s). To emphasize this we
will allude to it as a comparativist-holist view:

The comparativist . . . insists on the point, which [Mayo] explicitly denies, that test-
ing or confirming one “part” of a general theory provides, defeasibly, an evaluation
of all of it. (Laudan, 1997, p. 315)

Alan Chalmers maintains, in an earlier exchange, that we must already be
appealing to something akin to a Popperian comparativist account:

[Mayo’s] argument for scientific laws and theories boils down to the claim that they
have withstood severe tests better than any available competitor. The only difference
between Mayo and the Popperians is that she has a superior version of what counts
as a severe test. (Chalmers, 1999, p. 208)

Amalgamating Laudan and Chalmers’s suggestions for “comparativist–
holism” gives the following:

Comparativist (Holist) Testing: A theory has been well or severely tested provided
that it has survived (local) severe tests that its known rivals have failed to pass (and
not vice versa).

We argue that the comparativist–holist move is no rescue but rather
conflicts with the main goals of the severity account, much as the Bayesian
attempt does. We proceed by discussing a cluster of issues relating to the
points delineated in Section 3.1.

4 Comparing Comparativists with Severe Testers

4.1 Point 1: Best Tested Does Not Entail Well Tested

One cannot say about the comparatively best-tested theory what severity
requires – that the ways the theory or claim can be in error have been well-
probed and found to be absent (to within the various error margins of the
test). It seems disingenuous to say all of theory T is well tested (even to a



40 Deborah G. Mayo

degree) when it is known there are ways T can be wrong that have received
no scrutiny or that there are regions of implication not checked at all. Being
best tested is relative not only to existing theories but also to existing tests:
they may all be poor tests for the inference to T as a whole. One is back to a
problem that beset Popper’s account – namely, being unable to say “What
is so good about the theory that (by historical accident) happens to be the
best tested so far?” (Mayo, 2006, p. 92).

Whereas we can give guarantees about the reliability of the piecemeal
experimental test, we cannot give guarantees about the reliability of the
procedure advocated by the comparativist-holist tester. Their procedure
is basically to go from passing hypothesis H (perhaps severely in its own
right) to passing all of T – but this is a highly unreliable method; anyway, it
is unclear how one could assess its reliability. By contrast, we can apply the
severity idea because the condition “given H is false” (even within a larger
theory) always means “given H is false with respect to what T says about this
particular effect or phenomenon” (i.e., T(H)).11 If a hypothesis T(H) passes
a severe test we can infer something positive: that T gets it right about the
specific claim H, or that given errors have been reliably ruled out. This also
counts as evidence against any rival theory that conflicts with T(H).

Granted, it may often be shown that ruling out a given error is connected
to, and hence provides evidence for, ruling out others. The ability to do so is
a very valuable and powerful way of cross-checking and building on results.
Sometimes establishing these connections is achieved by using theoretical
background knowledge; other times sufficient experimental knowledge will
do. But whether these connections are warranted is an empirical issue that
has to be looked into on a case-by-case basis – whereas the comparativist-
holist would seem to be free of such an obligation, so long as theory T is
the best tested so far. Impressive “arguments from coincidence” from a few
successful hypotheses to the entire theory must be scrutinized for the case
in hand. We return to this in Chapter 2.

Rational Acceptability. It is not that we are barred from finding a theory
T “rationally acceptable,” preferred, or worthy of pursuit – locutions often
used by comparativists – upon reaching a point where T ’s key experimental
predictions have been severely probed and found to pass. One could infer
that T had solved a set of key experimental problems and take this as

11 It is important to see that the severity computation is not a conditional probability, which
would implicitly assume prior probability assignments to hypotheses which severity does
not assume. Rather, severity should be understood as the probability of so good an
agreement (between H and x) calculated under the assumption that H is false.
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grounds for “deciding to pursue” it further. But these decisions are distinct
from testing and would call for a supplement to what we are offering.12

As we see it, theories (i.e., theoretical models) serve a role analogous to
experimental models in the tasks of learning from data. Just as experimental
models serve to describe and analyze the relevance of any of the experimental
data for the experimental phenomenon, theoretical models serve to analyze
the relevance of any of the experimental inferences (estimates and tests) for the
theoretical phenomenon. If a theory T2 is a viable candidate to take the place
of rival T1, then it must be able to describe and analyze the significance of
the experimental outcomes that T1 can. We come back to this in considering
GTR. We should be concerned, too, by the threat to the stability of severity
assessments that the comparativist account would yield – the second point
in Section 3.1.

4.2 Point 2: Stability

Suppose an experimental test E is probing answers to the question: What is
the value of a given parameter �? Then, if a particular answer or hypothesis
severely passes, this assessment is not altered by the existence of a theory
that gives the same answer to this question. More generally, our account
lets us say that severely passing T(H) (i.e., what T says about H) gives
us experimental knowledge about this aspect of T, and this assessment
remains even through improvements, revisions, and reinterpretations of
that knowledge. By contrast, the entrance of a rival that passes all the tests
T does would seem to force the comparativist to change the assessment of
how well theory T had been tested.

On the severity account, if a rival theory T2 agrees with T1 with respect
to the effect or prediction under test, then the two theories are not rivals so
far as this experimental test is concerned – no matter how much they may
differ from each other in their full theoretical frameworks or in prediction
ranges not probed by the experimental test E. It is very important to qualify
this claim. Our claim is not that two theories fail to be rivals just because
the test is insufficiently sensitive to discriminate what they say about the
phenomenon under test; our claim is that they fail to be rivals when the
two say exactly the same thing with respect to the effect or hypothesis under
test.13 The severity assessment reflects this. If theory T1 says exactly the

12 Larry Laudan (1977) himself has always stressed that we should distinguish theory pursuit
from other stances one might take toward theories.

13 Of course, determining this might be highly equivocal, but that is a distinct matter.
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same thing about H as T2 – that is, (T1(H) = T2(H)) – then T2 cannot alter
the severity with which the test passes H.14 Note, though, that this differs
from saying T1(H) and T2(H) pass with equal severity. We consider this
argument in Section 4.3.

4.3 Point 3: Underdetermination

Point 3 refers to a key principle of error statistics, which is also the basis
for solving a number of philosophical problems. It is often argued that
data underdetermine hypotheses because data may equally well warrant
conflicting hypotheses according to one or another base measure of evi-
dential relationship. However, we can distinguish, on grounds of severity,
the well-testedness of two hypotheses and thereby get around underdeter-
mination charges. We take this up elsewhere (e.g., Mayo, 1997b). Here our
interest is in how the feature in point 3 bears on our question of moving
from low-level experimental tests to higher level theories. In particular, two
hypotheses may be nonrivals (relative to a primary question) and yet be
tested differently by a given test procedure – indeed the same hypothesis
may be better- or less-severely tested by means of (what is apparently) the
“same” data because of aspects of either the data generation or the hypoth-
esis construction procedure.

We can grant, for example, that a rival theory could always be erected
to accommodate the data, but a key asset of the error-statistical account is
its ability to distinguish the well-testedness of hypotheses and theories by
the reliability or severity of the accommodation method. Not all fits are the
same. Thus, we may be able to show, by building on individual hypotheses,
that one theory at some level (in the series or models) or a close variant to
this theory, severely passes. In so doing, we can show that no rival to this
theory can also severely pass.

Admittedly, all of this demands an examination of the detailed features
of the recorded data (the data models), not just the inferred experimental
effect or phenomenon. It sounds plausible to say there can always be some
rival, when that rival merely has to “fit” already-known experimental effects.
The situation is very different if one takes seriously the constraints imposed

14 Mistakes in regarding H as severely passed can obviously occur. A key set of challenges
comes from those we group under “experimental assumptions.” Violated assumptions
may occur because the actual experimental data do not satisfy the assumptions of the
experimental model or because the experimental test was not sufficiently accurate or
precise to reliably inform about the primary hypothesis or question. Of course, “higher-
lower” is just to distinguish primary questions; they could be arranged horizontally.
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by the information in the detailed data coupled with the need to satisfy the
severity requirement.

Finally, nothing precludes the possibility that so-called low-level hypothe-
ses could warrant inferring a high-level theory with severity. Even GTR,
everyone’s favorite example, is thought to predict a unique type of grav-
itational radiation, such that affirming that particular “signature” with
severity would rule out all but GTR (in its domain). With this tantalizing
remark, let us look more specifically at the patterns of progress in experi-
mental GTR.

5 Experimental Gravitation

This example is apt for two reasons. First, it is an example to which each of
the philosophers we have mentioned allude in connection with the problem
of using local experimental tests for large-scale theories. Second, the fact that
robust or severe experiments on gravitational effects are so hard to come
by led physicists to be especially deliberate about developing a theoretical
framework in which to discuss and analyze rivals to GTR and to compare the
variety of experiments that might enable their discrimination. To this end,
they developed a kind of theory of theories for delineating and partitioning
the space of alternative gravity theories, called the parameterized post-
Newtonian (PPN) framework. The only philosopher of science to discuss the
PPN framework in some detail, to my knowledge, is John Earman; although
the program has been updated and extended since his 1992 discussion, the
framework continues to serve in much the same manner. What is especially
interesting about the PPN framework is its role in inventing new classes
of rivals to GTR, beyond those that are known. It points to an activity
that any adequate account of theories should be able to motivate, if it is to
give forward-looking methods for making theoretical progress rather than
merely after-the-fact reconstructions of episodes. Popperians point out that
Popper had always advocated looking for rivals as part of his falsification
mandate. Granted, but neither he nor the current-day critical rationalists
supply guidance for developing the rivals or for warranting claims about
where hypotheses are likely to fail if false – eschewing as they do all such
inductivist claims about reliable methods (see Mayo, 2006).15

Experimental testing of GTR nowadays is divided into four periods:
1887–1919, 1920–1960, 1960–1980, and 1980 onward. Following Clifford

15 Popper’s purely deductive account is incapable, by his own admission, of showing the
reliability of a method.
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Will, the first is the period of genesis, which encompasses experiments on (1)
the foundations of relativistic physics (Michelson-Morley and the Eötvös
experiments) and the GTR tests on (2) the deflection of light and perihelion
of Mercury (for excellent discussions, see Will, 1980, 1986, 1996, 2004).
From the comparativist’s perspective, 1920–1960 would plainly be an era in
which GTR enjoyed the title of “best-tested” theory of gravity: it had passed
the “classical” tests to which it had been put and no rival existed with a
superior testing record to knock it off its pedestal. By contrast, from 1960 to
1980, a veritable “zoo” of rivals to GTR had been erected, all of which could
be constrained to fit these classical tests. So in this later period, GTR, from
the comparativist’s perspective, would have fallen from its pedestal, and the
period might be regarded as one of crisis, threatening progress or the like.
But in fact, the earlier period is widely regarded (by experimental gravitation
physicists) as the period of “stagnation,” or at least “hibernation,” due to the
inadequate link up between the highly mathematical GTR and experiment.
The later period, by contrast, although marked by the zoo of alternatives, is
widely hailed as the “golden era” or “renaissance” of GTR.

The golden era came about thanks to events of 1959–1960 that set the
stage for new confrontations between GTR’s predictions and experiments.
Nevertheless, the goals of this testing were not to decide if GTR was correct
in all its implications, but rather, in the first place, to learn more about GTR
(i.e., what does it really imply about experiments we can perform?) and, in
the second place, to build models for phenomena that involve relativistic
gravity (e.g., quasars, pulsars, gravity waves, and such). The goal was to
learn more about gravitational phenomena.

Comparativist testing accounts, eager as they are to license the entire
theory, ignore what for our severe tester is the central engine for making
progress, for getting ideas for fruitful things to try next to learn more.
This progress turned on distinguishing those portions of GTR that were
and were not well tested. Far from arguing for GTR on the grounds that it
had survived tests that existing alternatives could not, as our comparativist
recommends, our severe tester would set about exploring just why we are
not allowed to say that GTR is severely probed as a whole – in all the arenas
in which gravitational effects may occur. Even without having full-blown
alternative theories of gravity in hand we can ask (as they did in 1960): How
could it be a mistake to regard the existing evidence as good evidence for GTR?
Certainly we could be wrong with respect to predictions and domains that
were not probed at all. But how could we be wrong even with respect to
what GTR says about the probed regions, in particular, solar system tests?
One must begin where one is.
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Table 1.1. The PPN parameters and their significance

Parameter What it measures relative to GTR Values in GTR

λ How much space-curvature produced by unit rest
mass?

1

β How much “nonlinearity” in the superposition law
for gravity?

1

ξ Preferred location effects? 0
α1 Preferred frame effects? 0
α2 0
α3 0
α3 Violation of conservation of total momentum? 0
ζ1 0
ζ2 0
ζ3 0

Source: Adapted from Will (2005).

To this end, experimental relativists deliberately designed the PPN frame-
work to prevent them from being biased toward accepting GTR prematurely
(Will, 1993, p. 10), while allowing them to describe violations of GTR’s
hypotheses – discrepancies from what it said about specific gravitational
phenomena in the solar system. The PPN framework set out a list of param-
eters that allowed for a systematic way of describing violations of GTR’s
hypotheses. These alternatives, by the physicists’ own admissions, were set
up largely as straw men with which to set firmer constraints on these param-
eters. The PPN formalism is used to get relativistic predictions rather than
those from Newtonian theory – but in a way that is not biased toward GTR.
It gets all the relativistic theories of gravity talking about the same things
and to connect to the same data models (Mayo, 2002).

The PPN framework is limited to probing a portion or variant of GTR
(see Table 1.1):

The PPN framework takes the slow motion, weak field, or post-Newtonian limit
of metric theories of gravity, and characterizes that limit by a set of 10 real-valued
parameters. Each metric theory of gravity has particular values for the PPN param-
eters. (Will, 1993, p. 10)

The PPN framework permitted researchers to compare the relative merits
of various experiments ahead of time in probing the solar system approxima-
tion, or solar system variant, of GTR. Appropriately modeled astronomical
data supply the “observed” (i.e., estimated) values of the PPN parameters,
which could then be compared with the different values hypothesized by
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the diverse theories of gravity. This permitted the same PPN models of
experiments to serve as intermediate links between the data and several
alternative primary hypotheses based on GTR and its rival theories.

This mediation was a matter of measuring, or more correctly inferring, the
values of PPN parameters by means of complex, statistical least-square fits to
parameters in models of data. Although clearly much more would need to be
said to explain how even one of the astrometric models is developed to design
what are described as “high-precision null experiments,” it is interesting to
note that, even as the technology has advanced, the overarching reasoning
shares much with the classic interferometry tests (e.g., those of Michelson
and Morley). The GTR value for the PPN parameter under test serves as
the null hypothesis from which discrepancies are sought. By identifying
the null with the prediction from GTR, any discrepancies are given a very
good chance to be detected; so, if no significant departure is found, this
constitutes evidence for the GTR prediction with respect to the effect under
test. Without warranting an assertion of zero discrepancy from the null
GTR value (set at 1 or 0), the tests are regarded as ruling out GTR violations
exceeding the bounds for which the test had very high probative ability. For
example, �, the deflection-of-light parameter, measures “spatial curvature;”
by setting the GTR predicted value to 1, modern tests infer upper bounds
to violations (i.e., |1 – � |). (See “Substantive Nulls,” this volume, p. 264.)

Some elements of the series of models for the case of � are sketched in
Table 1.2.

The PPN framework is more than a bunch of parameters; it provides a
general way to interpret the significance of the piecemeal tests for primary
gravitational questions, including deciding to which questions a given test
discriminates answers. Notably, its analysis revealed that one of the classic
tests of GTR (redshift) “was not a true test” of GTR but rather tested the
equivalence principle – roughly the claim that bodies of different composi-
tion fall with the same accelerations in a gravitational field. This principle
is inferred with severity by passing a series of null hypotheses (e.g., Eötvös
experiments) that assert a zero difference in the accelerations of two differ-
ently composed bodies. The high precision with which these null hypotheses
passed gave warrant to the inference that “gravity is a phenomenon of curved
spacetime, that is, it must be described by a metric theory of gravity” (Will,
1993, p. 10).

For the comparativist, the corroboration of a part of GTR, such as the
equivalence principle, is regarded as corroborating, defeasibly, GTR as a
whole. In fact, however, corroborating the equivalence principle is recog-
nized only as discriminating between so-called metric versus nonmetric
gravitational theories, e.g., those gravity theories that do, versus those that
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Table 1.2. Elements of the series of models for the case of λ

PRIMARY: Testing the post-Newtonian approximation of GTR
Parameterized post-Newtonian (PPN) formalism
Delineate and test predictions of the metric theories using the PPN parameters
Use estimates to set new limits on PPN parameters and on adjustable parameters in

alternatives to GTR
Example: For �, how much spatial curvature does mass produce?

EXPERIMENTAL MODELS: PPN parameters are modeled as statistical null
hypotheses (relating to models of the experimental source)

Failing to reject the null hypothesis (identified with the GTR value) leads to setting
upper and lower bounds, values beyond which are ruled out with high severity

Example: hypotheses about � in optical and radio deflection experiments

DATA: Models of the experimental source (eclipses, quasar, moon, earth–moon system,
pulsars, Cassini)

Least-squares fits of several parameters, one of which is a function of the observed
statistic and the PPN parameter of interest (the function having known distribution)

Example: least-squares estimates of � from “raw” data in eclipse and radio
interferometry experiments.

DATA GENERATION AND ANALYSIS, EXPERIMENTAL DESIGN
Many details which a full account should include.

do not, satisfy this fundamental principle. This recognition only emerged
once it was realized that all metric theories say the same thing with respect
to the equivalence principle. Following point 2 above, they were not rivals
with respect to this principle. More generally, an important task was to
distinguish classes of experiments according to the specific aspects each
probed and thus tested. An adequate account of the role and testing of theo-
ries must account for this, and the comparativist–holist view does not. The
equivalence principle itself, more correctly called the Einstein equivalence
principle, admitted of new partitions (e.g., into strong and weak, see later
discussion), leading to further progress.16

16 More carefully, we should identify the Einstein equivalence principle (EEP) as well as
distinguish weak and strong forms; the EEP states that (1) the weak equivalence principle
(WEP) is valid; (2) the outcome of any local nongravitational experiment is independent
of the velocity of the freely falling reference frame in which it is performed (Lorentz
invariance); and (3) the outcome of any local nongravitational experiment is independent
of where and when in the universe it is performed (local position invariance). A subset
of metric theories obeys a stronger principle, the strong equivalence principle (SEP). The
SEP asserts that the stipulation of the equivalence principle also hold for self-gravitating
bodies, such as the earth–moon system.
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5.1 Criteria for a Viable Gravity Theory (during the “Golden Era”)

From the outset, the PPN framework included not all logically possible
gravity theories but those that passed the criteria for viable gravity theories.

(i) It must be complete, i.e., it must be capable of analyzing from “first
principles” the outcome of any experiment of interest. It is not enough
for the theory to postulate that bodies made of different material
fall with the same acceleration . . . [This does not preclude “arbitrary
parameters” being required for gravitational theories to accord with
experimental results.]

(ii) It must be self-consistent, i.e., its prediction for the outcome of every
experiment must be unique, so that when one calculates the predic-
tions by two different, though equivalent methods, one always gets the
same results . . .

(iii) It must be relativistic, i.e., in the limit as gravity is ‘turned off’ . . . the
nongravitational laws of physics must reduce to the laws of special
relativity . . .

(iv) It must have the correct Newtonian limit, i.e., in the limit of weak
gravitational fields and slow motions, it must reproduce Newton’s
laws . . . (Will, 1993, pp. 18–21).

From our perspective, viable theories must (1) account for experimental
results already severely passed and (2) show the significance of the experi-
mental data for gravitational phenomena.17 Viable theories would have to
be able to analyze and explore experiments about as well as GTR; there is a
comparison here but remember that what makes a view “comparativist” is
that it regards the full theory as well tested by dint of being “best tested so
far.” In our view, viable theories are required to pass muster for the goals to
which they are put at this stage of advancing the knowledge of gravitational
effects. One may regard these criteria as intertwined with the “pursuit”
goals – that a theory should be useful for testing and learning more.

The experimental knowledge gained permits us to infer that we have a
correct parameter value – but in our view it does more. It also indicates
we have a correct understanding of how gravity behaves in a given domain.
Different values for the parameters correspond to different mechanisms,

17 Under consistency, it is required that the phenomenon it predicts be detectable via different
but equivalent procedures. Otherwise they would be idiosyncratic to a given procedure
and would not give us genuine, repeatable phenomena.
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however abstract, at least in viable theories. For example, in the Brans–
Dicke theory, gravity couples both to a tensor metric and a scalar, and
the latter is related to a distinct metaphysics (Mach’s principle). Although
theoretical background is clearly what provides the interpretation of the
relevance of the experimental effects for gravity, no one particular theory
needs to be accepted to employ the PPN framework – which is at the heart
of its robustness. Even later when this framework was extended to include
nonmetric theories (in the fourth period, labeled “the search for strong
gravitational effects”), those effects that had been vouchsafed with severity
remain (although they may well demand reinterpretations).

5.2 Severity Logic and Some Paradoxes regarding
Adjustable Constants

Under the completeness requirement for viable theories there is an explicit
caveat that this does not preclude “arbitrary parameters” from being nec-
essary for gravitational theories to obtain correct predictions, even though
these are deliberately set to fit the observed effects and are not the outgrowth
of “first principles.” For example, the addition of a scalar field in Brans–
Dicke theory went hand-in-hand with an adjustable constant w: the smaller
its value the larger the effect of the scalar field and thus the bigger the differ-
ence with GTR, but as w gets larger the two become indistinguishable. (An
interesting difference would have been with evidence that w is small, such as
40; its latest lower bound is pushing 20,000!) What should we make of the
general status of the GTR rivals, given that their agreement with the GTR
predictions and experiment required adjustable constants? This leads us to
the general and much debated question of when and why data-dependent
adjustments of theories and hypotheses are permissible.

The debate about whether to require or at least prefer (and even how to
define) “novel” evidence is a fascinating topic in its own right, both in phi-
losophy of science and statistics (Mayo, 1991, 1996), and it comes up again
in several places in this volume (e.g., Chapters 4, 6, and 7); here, we consider
a specific puzzle that arises with respect to experimental GTR. In particular,
we consider how the consequences of severity logic disentangle apparently
conflicting attitudes toward such “data-dependent constructions.” Since all
rivals were deliberately assured of fitting the effects thanks to their adjustable
parameters, whereas GTR required no such adjustments, intuitively we tend
to think that GTR was better tested by dint of its agreement with the exper-
imental effects (e.g., Worrall, 1989). This leads the comparativist to reject
such parameter adjustments. How then to explain the permissive attitude
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toward the adjustments in experimental GTR? The comparativist cannot
have it both ways.

By contrast, Bayesians seem to think they can. Those who wish to justify
differential support look for it to show up in the prior probabilities, since all
rivals fit the observed effects. Several Bayesians (e.g., Berger, Rosenkrantz)
postulate that a theory that is free of adjustable parameters is “simpler”
and therefore enjoys a higher prior probability; this would explain giving
GTR higher marks for getting the predictions right than the Brans–Dicke
theory or other rivals relying on adjustments (Jeffreys and Berger, 1992).
But to explain why researchers countenance the parameter-fixing in GTR
alternatives, other Bayesians maintain (as they must) that GTR should not
be given a higher prior probability. Take Earman: “On the Bayesian analysis,”
this countenancing of parameter fixing “is not surprising, since it is not at all
clear that GTR deserves a higher prior than the constrained Brans and Dicke
theory” (Earman, 1992, p. 115). So Earman denies differential support is
warranted in cases of parameter fixing (“why should the prior likelihood of
the evidence depend upon whether it was used in constructing T?”; Earman,
1992, p. 116), putting him at odds with the Bayesian strategy for registering
differential support (by assigning lower priors to theories with adjustable
constants).

The Bayesian, like the comparativist, seems to lack a means to reflect,
with respect to the same example, both (a) the intuition to give less credit
to passing results that require adjustable parameters and (b) the accepted
role, in practice, of deliberately constrained alternatives that are supported
by the same data doing the constraining. Doubtless ways may be found, but
would they avoid “ad hoc-ness” and capture what is actually going on?

To correctly diagnose the differential merit, the severe testing approach
instructs us to consider the particular inference and the ways it can be in
error in relation to the corresponding test procedure. There are two distinct
analyses in the GTR case. First consider �. The value for � is fixed in GTR,
and the data could be found to violate this fixed prediction by the procedure
used for estimating � (within its error margins). By contrast, in adjusting
w, thereby constraining Brans–Dicke theory to fit the estimated �, what is
being learned regarding the Brans–Dicke theory is how large would w need
to be to agree with the estimated �? In this second case, inferences that pass
with high severity are of the form “w must be at least 500.” The questions,
hence the possible errors, hence the severity differs.

But the data-dependent GTR alternatives play a second role, namely to
show that GTR has not passed severely as a whole: They show that were a
rival account of the mechanism of gravity correct, existing tests would not
have detected this. In our view, this was the major contribution provided
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by the rivals articulated in the PPN framework (of viable rivals to GTR).
Even without being fully articulated, they effectively block GTR from having
passed with severity as a whole (while pinpointing why). Each GTR rival
gives different underlying accounts of the behavior of gravity (whether one
wishes to call them distinct “mechanisms” or to use some other term). This
space of rival explanations may be pictured as located at a higher level than
the space of values of this parameter (Table 1.2). Considering the � effect, the
constrained GTR rivals succeed in showing that the existing experimental
tests did not rule out, with severity, alternative explanations for the � effect
given in the viable rivals.18 But the fact that a rival, say Brans–Dicke theory,
served to block a high-severity assignment to GTR, given an experiment E,
is not to say that E accords the rival high severity; it does not.

5.3 Nordvedt Effect �

To push the distinctions further, the fact that the rival Brans–Dicke theory is
not severely tested (with E) is not the same as evidence against it (the severity
logic has all sorts of interesting consequences, which need to be drawn out
elsewhere). Evidence against it came later. Most notably, a surprise discovery
in the 1960s (by Nordvedt) showed that Brans–Dicke theory would conflict
with GTR by predicting a violation of what came to be known as the strong
equivalence principle (basically the weak equivalence principle for massive
self-gravitating bodies, e.g., stars and planets; see Note 16). This recognition
was welcomed (apparently, even by Dicke) as a new way to test GTR as well
as to learn more about gravity experiments.

Correspondingly, a new parameter to describe this effect, the Nordvedt
effect, was introduced into the PPN framework (i.e., �). The parameter �

would be 0 for GTR, so the null hypothesis tested is that � = 0 as against
� �= 0 for rivals. Measurements of the round-trip travel times between the
Earth and the Moon (between 1969 and 1975) enabled the existence of such
an anomaly for GTR to be probed severely (the measurements continue
today). Again, the “unbiased, theory-independent viewpoint” of the PPN
framework (Will, 1993, p. 157) is credited with enabling the conflicting
prediction to be identified. Because the tests were sufficiently sensitive,
these measurements provided good evidence that the Nordvedt effect is
absent, set upper bounds to the possible violations, and provided evidence

18 Another way to see this is that the Brans–Dicke effect blocks high severity to the hypothesis
about the specific nature of the gravitational cause of curvature – even without its own
mechanism passing severely. For this task, they do not pay a penalty for accommoda-
tion; indeed, some view their role as estimating cosmological constants, thus estimating
violations that would be expected in strong gravity domains.
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for the correctness of what GTR says with respect to this effect – once again
instantiating the familiar logic.19

5.4 Another Charge We Need to Tackle

According to Mayo, a test, even a severe test, of the light-bending hypothesis leaves
us in the dark about the ability of GTR to stand up to tests of different ranges of its
implications. For instance, should GTR’s success in the light-bending experiments
lend plausibility to GTR’s claims about gravity waves or black holes? Mayo’s stric-
tures about the limited scope of severity seem to preclude a positive answer to that
question. (Laudan, 1997, p. 313)

In our view, there will not be a single answer, positive or negative. Whether
T’s success in one part or range indicates it is likely to succeed (and to what
extent) in another is an empirical question that must be answered on a
case-by-case basis. Moreover, because this question seems to us to be the
motivation for a good part of what scientists do in exploring theories, a
single context-free answer would not even be desirable. But consider GTR:
although one splits off the piecemeal tests, we do not face a disconnected
array of results; indeed the astrometric (experimental) models show that
many of the parameters are functions of the others. For example, it was
determined that the deflection effect parameter � measures the same thing
as the so-called time delay, and the Nordvedt parameter � gives estimates of
several others. Because it is now recognized that highly precise estimates of
� constrain other parameters, � is described as the fundamental parameter
in some current discussions.

Putting together the interval estimates, it is possible to constrain the
values of the PPN parameters and thus “squeeze” the space of theories
into smaller and smaller volumes as depicted in Figure 1.1. In this way,
entire chunks of theories can be ruled out at a time (i.e., all theories that
predict the values of the parameter outside the interval estimates). By getting
increasingly accurate estimates, more severe constraints are placed on how
far theories can differ from GTR, in the respects probed. By 1980, it could
be reported that “one can now regard solar system tests of post-Newtonian
effects as measurements of the ‘correct’ values of these parameters” (Will,
1993).

19 In the “secondary” task of scrutinizing the validity of the experiment, they asked, can other
factors mask the � effect? Most, it was argued, can be separated cleanly from the � effect
using the multiyear span of data; others are known with sufficient accuracy from previous
measurements or from the lunar lasing experiment itself.
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5.5 Going beyond Solar System Tests

We can also motivate what happens next in this episode, although here I
must be very brief. Progress is again made by recognizing the errors that are
still not ruled out.

All tests of GTR within the solar system have this qualitative weakness: they say
nothing about how the “correct” theory of gravity might behave when gravitational
forces are very strong such as near a neutron star. (Will, 1996, p. 273)

The discovery (in 1974) of the binary pulsar 1913 + 16 opened up the
possibility of probing new aspects of gravitational theory: the effects of
gravitational radiation. Finding the decrease in the orbital period of this
(Hulse-Taylor) binary pulsar at a rate in accordance with the GTR predic-
tion of gravity wave energy loss is often regarded as the last event of the
golden age. This example is fascinating in its own right, but we cannot
take up a discussion here20 (see Damour and Taylor, 1991; Lobo, 1996,
pp. 212–15; Will, 1996).

There is clearly an interplay between theoretical and experimental consid-
erations driving the program. For example, in the fourth and contemporary
period, that of “strong gravity,” a number of theoretical grounds indicate
that GTR would require an extension or modification for strong gravi-
tational fields – regions beyond the domains for which effects have been
probed with severity. Although experimental claims (at a given level, as it

20 For a brief discussion of how the hierarchy of models applies to the binary pulsar analysis,
see Mayo (2000).
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were) can remain stable through change of theory (at “higher” levels), it
does not follow that experimental testing is unable to reach those theoretical
levels. An error, as we see it, can concern any aspect of a model or hypothesis
or mistaken understandings of an aspect of the phenomenon in question.
For example, the severely tested results can remain while researchers con-
sider alternative gravitational mechanisms in regimes not probed. Despite
the latitude in these extended gravity models, by assuming only some gen-
eral aspects on which all the extended models agree, they are able to design
what are sometimes called “clean tests” of GTR; others, found sullied by
uncertainties of the background physics, are entered in the logbooks for
perhaps tackling with the next space shuttle!21 These analyses motivate new
searches for very small deviations of relativistic gravity in the solar system
that are currently present in the range of approximately 10−5. Thus, probing
new domains is designed to be played out in the solar system, with its stable
and known results. This stability, however, does not go hand-in-hand with
the kind of conservative attitude one tends to see in philosophies of theory
testing: rather than hanker to adhere to well-tested theories, there seems to
be a yen to find flaws potentially leading to new physics (perhaps a quantum
theory of gravity).22

General relativity is now the “standard model” of gravity. But as in particle physics,
there may be a world beyond the standard model. Quantum gravity, strings and
branes may lead to testable effects beyond general relativity. Experimentalists will
continue to search for such effects using laboratory experiments, particle accel-
erators, instruments in space and cosmological observations. At the centenary of
relativity it could well be said that experimentalists have joined the theorists in
relativistic paradise (Will, 2005, p. 27).

6 Concluding Remarks

Were one to pursue the error-statistical account of experiment at the level
of large-scale theories, one would be interested to ask not “How can we
severely pass high-level theories?” but rather, “How do scientists break

21 Even “unclean” tests can rule out rivals that differ qualitatively from estimated effects. For
example, Rosen’s bimetric theory failed a “killing test” by predicting the reverse change in
orbital period. “In fact we conjecture that for a wide class of metric theories of gravity, the
binary pulsar provides the ultimate test of relativistic gravity” (Will, 1993, p. 287).

22 According to Will, however, even achieving superunification would not overthrow the
standard, macroscopic, or low-energy version of general relativity. Instead, any modifica-
tions are expected to occur at the Planck energy appropriate to the very early universe, or
at singularities inside black holes.
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down their questions about high-level theories into piecemeal questions
that permit severe testing?” And how do the answers to these questions
enable squeezing (if not exhausting) the space of predictions of a theory or
of a restricted variant of a theory? We are not inductively eliminating one
theory at a time, as in the typical “eliminative inductivism,” but rather classes
of theories, defined by giving a specified answer to a specific (experimental)
question.

Note, too, that what is sought is not some way to talk about a measure of
the degree of support or confirmation of one theory compared with another,
but rather ways to measure how far off what a given theory says about a
phenomenon can be from what a “correct” theory would need to say about
it by setting bounds on the possible violations. Although we may not have
a clue what the final correct theory of the domain in question would look
like, the value of the experimental knowledge we can obtain now might be
seen as giving us a glimpse of what a correct theory would say regarding the
question of current interest, no matter how different the full theory might
otherwise be.
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